References
[1]. Agrawal, N., Cosgriff, R., & Mudur, R. (2009). Mood detection: Implementing a facial expression recognition system. CS229 Project. Retrieved from http:// citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.374. 8073&r ep=rep1&type=pdf
[2]. Huang,H-F.,Tai,S-C. (2012). Facial expression recognition using near feature extraction algorithm. Electronic Letters on Computer Vision and Image Analysis, 11(1), 41-54.
[3]. Ismaila, W. O., Adetunji, A. B., Falohun, A. S., &Iwashokun, G. B. (2012). A study of features extraction algorithms for human face recognition. Transnational Journal of Science and Technology, 2(6),14-22.
[4]. Khan, R. A., Meyer, A., Konik, H., & Bouakaz, S. (2012, June). Exploring human visual system: Study to aid the development of automatic facial expression recognition framework. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 49-54). IEEE. https://doi.org/10.1109/CVPRW.2012. 6239186
[5]. Ojala, T., & Pietikäinen, M. (1999). Unsupervised texture segmentation using feature distributions. Pattern Recognition, 32(3), 477-486.
[6]. Rahim, M. A., Azam, M. S., Hossain, N., & Islam, M. R. (2013). Face recognition using Local Binary Patterns (LBP). Global Journal of Computer Science and Technology,13(4), 1-7.
[7]. Riaz, Z., Mayer, C., Wimmer, M., Beetz, M., & Radig, B. (2009, June). A model based approach for expressions invariant face recognition. In International Conference on Biometrics (pp. 289-298). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01793-3_30
[8]. Saaidia, M., Gattal, A., Maamri, M., & Ramdani, M.(2012). Face expression recognition using auto regressive models to train neural network classifiers. In International Journal of New Computer Architectures and their Applications (IJNCAA), 2(3),481-487.
[9]. Shan, C., Gong, S., & McOwan, P. W. (2009). Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing, 27(6), 803-816. https://doi.org 10.1016 /j.imavis. 2008 .08 .005
[10]. Starostenko, O., Contreras, R., Aquino, V. A., Pulido,L. F., Asomoza, J. R., Sergiyenko, O., & Tyrsa, V. (2011). A fuzzy reasoning model for recognition of facial expressions. Computación y Sistemas, 15(2), 163-180.
[11]. Tian, Y. L. (2004, June). Evaluation of face resolution for expression analysis. In 2004 Conference on Computer Vision and Pattern Recognition Workshop (pp. 82-82). IEEE. https://doi.org/10.1109/CVPR.2004.334
[12]. Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR), (vol. 1, PP.1-9). https:// doi.org/ 10.1109/CVPR.2001.990517
[13]. Way, M. J., Scargle, J. D., Ali, K. M., & Srivastava, A. N. (2012). Advances in machine learning and data mining for astronomy. Chapman and Hall/CRC. https://doi.org/ 10.1201/b11822
[14]. Whitehill, J., & Omlin, C. W. (2006, April). Haar features for facs au recognition. In 7th International Conference on Automatic Face and Gesture Recognition (FGR06) (pp. 5- pp). IEEE. https://doi.org/ 10.1109/FGR.2006.61
[15]. Yang, M. H. (2013). Face Detection. Retrieved from https://faculty.ucmerced.edu/mhyang/papers/facedetection- chapter.pdf
[16]. Zhong, L., Liu, Q., Yang, P., Liu, B., Huang, J., & Metaxas, D. N. (2012, June). Learning active facial patches for expression analysis. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 2562- 2569). IEEE. https://doi.org/10.1109/CVPR.2012.6247974