References
[1]. Al-Zoubi, A., Yang, F., & Kishk, A. (2009). A broadband
center-fed circular patch-ring antenna with a monopole
like radiation pattern. IEEE Transactions on Antennas and
Propagation, 57(3), 789-792. https://doi.org/10.1109/TAP.
2008.2011406
[2]. Balanis, C. A. (2005). Antenna Theory: Analysis and
Design (3rd ed.). Wiley.
[3]. Balanis, C. A. (2012). Antenna Theory: Analysis and
Design. Wiley.
[4]. Dimitrijević, T., Joković, J., Dončov, N., & Milovanović,
B. (2015, October). TLM modelling of an annular ring
coupled to a circular patch with a shorting pin. In 2015,
12th International Conference on Telecommunication in
Modern Satellite, Cable and Broadcasting Services
(TELSIKS) (pp. 200-204). IEEE. https://doi.org/10.1109/
TELSKS.2015.7357769
[5]. Guo, Y. J., Paez, A., Sadeghzadeh, R. A., & Barton, S. K.
(1997). A circular patch antenna for radio LAN's. IEEE
Transactions on Antennas and Propagation, 45(1), 177-
178. https://doi.org/10.1109/8.554256
[6]. Iwasaki, H. (1996). A circularly polarized small-size
microstrip antenna with a cross slot. IEEE Transactions on
Antennas and Propagation, 44(10), 1399-1401. https://
doi.org/10.1109/8.537335
[7]. Kokotoff, D. M., Waterhouse, R. B., Birtcher, C. R., &
Aberle, J. T. (1997). Annular ring coupled circular patch
with enhanced performance. Electronics Letters, 33(24),
2000-2001. https://doi.org/10.1049/el:19971411
[8]. Panda, R. A., Mishra, D., & Panda, H. (2016a, October). Biconvex patch antenna with circular slot for 10
GHz application. In 2016 International Conference on
Signal Processing, Communication, Power and
Embedded System (SCOPES) (pp. 1927-1930). IEEE.
https://doi.org/10.1109/SCOPES.2016.7955782
[9]. Panda, R. A., Mishra, S. N., & Mishra, D. (2016b).
Perturbed elliptical patch antenna design for 50 GHz
application. In Microelectronics, Electromagnetics and
Telecommunications (pp. 507-518). Springer, New Delhi.
https://doi.org/10.1007/978-81-322-2728-1_47
[10]. Panda, R. A., Mishra, D., & Panda, H. (2018).
Biconcave lens structured patch antenna with circular slot
nd for Ku-band applications. In Proceedings of 2
International Conference on Micro -Electronics,
Electromagnetics and Telecommunications (pp. 73-83).
Springer, Singapore. https://doi.org/10.1007/978-981-10-
4280-5_8
[11]. Panda, R. A., Dash, P., Mandi, K., & Mishra, D.
(2019a, March). Gain enhancement of a biconvex patch
antenna using metallic rings for 5G application. In 2019,
6th International Conference on Signal Processing and
Integrated Networks (SPIN) (pp. 840-844). IEEE. https://doi.
org/10.1109/SPIN.2019.8711581
[12]. Panda, R. A., Panda, M., Nayak, S., Das, N., &
Mishra, D. (2019b). Gain enhancement using
complimentary split ring resonator on biconcave patch
for 5G application. In International Conference on
Sustainable Computing in Science, Technology &
Management (SUSCOM-2019) (pp. 994-1000), Rajastan,
Jaipur, India. https://dx.doi.org/10.2139/ssrn.3356261
[13]. Sanyal, G., & Vyas, K. (2013). A CPW fed circular
microstrip patch antenna with defected ground structure.
International Journal of Microwave Applications, 2(4),
113-116.
[14]. Sung, Y. J., & Kim, Y. S. (2004). Circular polarised
microstrip patch antennas for broadband and dual-band
operation. Electronics Letters, 40(9), 520-522.
https://doi.org/10.1049/el:20040379
[15]. Vyas, K., & Singhal, P. K. (2014). Bandwidth
Enhancement in CPW fed compact rectangular patch
antenna. International Journal of Electrical, Computer Electronics and Communication Engineering, 8(2), 378-381.
[16]. Zhang, Y., Hong, W., Yu, C., Kuai, Z. Q., Don, Y. D., &
Zhou, J. Y. (2008). Planar ultra wide band antennas with
multiple notched bands based on etched slots on the
patch and/or split ring resonators on the feed line. IEEE
Transactions on Antennas and Propagation, 56(9), 3063-
3068. https://doi.org/10.1109/TAP.2008.928815