References
[1]. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde- Farley, D., & Bengio, Y. (2012). Theano: New features and speed improvements. Deep Learning Workshop, NIPS 2012 (pp. 1-10).
[2]. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., & Bengio, Y. (2010, June). Theano: A CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy), 4(3), 1-7.
[3]. Chen, H., Qi, X. J., Cheng, J. Z., & Heng, P. A. (2016, February). Deep contextual networks for neuronal structure segmentation. In Thirtieth AAAI Conference on Artificial Intelligence (pp. 1167-1173).
[4]. Cuda-Convnet (n. d.). Google Code Archive. Retrieved from https://code.google.com/p/cudaconvnet/
[5]. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248-255). IEEE. https://doi.org/10.1109/CVPR.2009.5206848 Source: DBLP
[6]. Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2015). The Pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1), 98-136. https://doi. org/10.1007/s11263-014-0733-5
[7]. Foulds, J., & Frank, E. (2010). A review of multiinstance learning assumptions. The Knowledge Engineering Review, 25(1), 1-25. https://doi.org/10.1017/ S026988890999035X
[8]. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587). https://doi.org/10.1109/cvpr.2014.81
[9]. Hatipoglu, N., & Bilgin, G. (2014, October). Classification of histopathological images using convolutional neural network. In 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE. https://doi.org/10.1109/ IPTA.2014.7001976
[10]. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034). https://doi.org/10.1109/ICCV.2015.123
[11]. Jain, V., Murray, J. F., Roth, F., Turaga, S., Zhigulin, V., Briggman, K. L., Helmstaedter, M. N., Denk, W., & Seung, H. S. (2007, October). Supervised learning of image restoration with convolutional networks. In 2007 IEEE 11th International Conference on Computer Vision (pp. 1-8). IEEE. https://doi.org/10.1109/ICCV.2007.4408909
[12]. Kraus, O. Z., Jimmy, L., & Frey, B. (2015). Classification and segmenting microscopy images using convolutional multiple instance learning. Bioinformatics, 32 (12), i52-i59. https://doi.org/10.1093/bioinformatics/ btw252
[13]. Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images (Vol. 1, No. 4, p. 7). Technical Report, University of Toronto.
[14]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25(2), 1097-1105. http://doi.org/10.1145/ 3065386
[15]. Ljosa, V., Sokolnicki, K. L., & Carpenter, A. E. (2012). Annotated high-throughput microscopy image sets for validation. Nature Methods, 9(7), 637-637. http://doi.org/ 10.1038/nmeth.2083
[16]. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3431-3440). https://doi.org/ 10.1109/CVPR.2015.7298965
[17]. Peng, H. (2008). Bioimage informatics: A new area of engineering biology. Bioinformatics, 24(17), 1827-1836. https://doi.org/10.1093/bioinformatics/btn346
[18]. Pinherio, R. C. P. H., & Pedro, H. (2014). Recurrent convolutional neural networks for scene parsing. In Proceedings of the 31st on International Conference on Machine Learning (ICML-14), 32, I-82-I-90.
[19]. Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp.234-241). Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
[20]. Socher, R., Lin, C. C., Manning, C., & Ng, A. Y. (2011). Parsing natural scenes and natural language with recursive neural networks. In Proceedings of the 28th International Conference on Machine Learning (ICML- 11) (pp. 129-136).
[21]. Wählby, C., Kamentsky, L., Liu, Z. H., Riklin-Raviv, T., Conery, A. L., O'rourke, E. J., Sokolnicki, K. L., Visvikis, O., Ljosa, V., Irazoqui, J. E., Golland, P., Ruvkun, G., Ausubel, F. M., & Carpenter, A. E. (2012). An image analysis toolbox for high-throughput C. elegans assays. Nature Methods, 9(7), 714-716. https://doi.org/10.1038/nmeth.1984
[22]. Wiehman, S., & de villiars, H. (2016). Semantic segmentation of bio images using Convolution Neural Networks. 2016 International Joint Conference on Neural Networks (IJCNN), (pp. 624-631). https://doi.org/10.1109/ IJCNN.2016.7727258
[23]. Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701.