References
[1]. Chen, K. C., Kung, L. H., Shiung, D., Prasad, R., & Chen, S. (2007, December). Self-organizing terminal architecture for cognitive radio networks. In the 10th International Symposium on Wireless Personal Multimedia Communications (pp. 926-931).
[2]. Chen, W. H., Lin, W. R., Tsao, H. C., & Lin, C. (2016). Probabilistic power allocation for cognitive radio networks with outage constraints and one-bit side information. IEEE Transactions on Signal Processing, 64(4), 867-881. https://doi.org/10.1109/TSP.2015.2494852
[3]. Cordeiro, C., Challapali, K., Birru, D., & Shankar, S. (2005, November). IEEE 802.22: The first worldwide wireless standard based on cognitive radios. In 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. (pp. 328-337). IEEE https://doi.org/10.1109/DYSPAN.2005. 1542649.
[4]. Holland, O., Attar, A., Olaziregi, N., Sattari, N., & Aghvami, A. H. (2006, September). A universal resource awareness channel for cognitive radio. In 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1-5). IEEE. https://doi.org/ 10.1109/PIMRC.2006.254338
[5]. Hung, S. C., Hung, S. Y., Wu, E. H. K., & Chen, G. H. (2006, September). A decentralized CR system algorithm for cognitive borrowing scheme from primary users. In 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1-5). IEEE. https://doi.org/10.1109/PIMRC.2006.254337
[6]. Kang, X., Zhang, R., Liang, Y. C., & Garg, H. K. (2011). Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications, 29(2), 374-383. https://doi.org/10.1109/JSAC.2011.110210
[7]. Kolodzy, P. (2003, March). Spectrum policy task force: findings and recommendations. In International Symposium on Advanced Radio Technologies (ISART) (Vol. 5, No. 12, pp. 459-465).
[8]. Li, L., Zhou, X., Xu, H., Li, G. Y., Wang, D., & Soong, A. (2010). Simplified relay selection and power allocation in cooperative cognitive radio systems. IEEE Transactions on Wireless Communications, 10(1), 33-36. https://doi.org/ 10.1109/TWC.2010.101810.100311
[9]. Manolakos, A., Noam, Y., & Goldsmith, A. J. (2015). Null space learning in cooperative MIMO cellular networks using interference feedback. IEEE Transactions on Wi reless Communications, 14 (7), 3961-3977. https://doi.org/10.1109/TWC.2015.2415483
[10]. Mansukhani, J., Ray, P., & Varshney, P. K. (2016). Coupled detection and estimation based censored spectrum sharing in cognitive radio networks. IEEE Transactions on Wireless Communications, 15(6), 4206- 4217. https://doi.org/10.1109/TWC.2016.2536731
[11]. Noam, Y., & Goldsmith, A. J. (2013). Blind null-space learning for MIMO underlay cognitive radio with primary user interference adaptation. IEEE Transactions on Wireless Communications, 12 (4), 1722-1734. https://doi.org/10.1109/TWC.2013.021213.120643
[12]. Rezki, Z., & Alouini, M. S. (2012). Ergodic capacity of cognitive radio under imper fect channel-state information. IEEE Transactions on Vehicular Technology, 61(5), 2108-2119. https://doi.org/10.1109/TVT.2012. 2195042
[13]. Wang, L. C., Wang, C. W., Lu, Y. C., & Liu, C. M. (2007, March). A concurrent transmission MAC protocol for enhancing throughout and avoiding spectrum sensing in cognitive radio. In 2007 IEEE Wireless Communications and Networking Conference (pp. 121-126). IEEE.
[14]. Wang, Q., Ren, K., Ning, P., & Hu, S. (2015). Jamming-resistant multiradio multichannel opportunistic spectrum access in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(10), 8331- 8344. https://doi.org/10.1109/TVT.2015.2511071
[15]. Wu, Q., Wu, D., Xu, Y., & Wang, J. (2014). Demandaware multichannel opportunistic spectrum access: A local interaction game approach with reduced information exchange. IEEE Transactions on Vehicular Technology, 64(10), 4899-4904. https://doi.org/10.1109/ TVT.2014.2369484
[16]. Zhang, R., Gao, F., & Liang, Y. C. (2010). Cognitive beamforming made practical: Effective interference channel and learning-throughput tradeoff. IEEE Transactions on Communications, 58(2), 706-718. https://doi.org/10.1109/TCOMM.2010.02.080476
[17]. Zhang, L., Xiao, M., Wu, G., Zhao, G., Liang, Y. C., & Li, S. (2016). Proactive cross-channel gain estimation for spectrum sharing in cognitive radio. IEEE Journal on Selected Areas in Communications, 34(10), 2776-2790. https://doi.org/10.1109/JSAC.2016.2605298
[18]. Zhang, L., Zhao, G., Wu, G., & Chen, Z. (2012, December). Proactive channel gain estimation for coexistence between cognitive and primary users. In 2012 IEEE Global Communications Conference (GLOBECOM) (pp. 1410-1415). IEEE. https://doi.org/10. 1109/GLOCOM.2012.6503311
[19]. Zhu, X., Shen, L., & Yum, T. S. P. (2007). Analysis of cognitive radio spectrum access with optimal channel reservation. IEEE Communications Letters, 11(4), 304- 306. https://doi.org/10.1109/LCOM.2007.348282