References
[1]. Guerrero, J. M., Vasquez, J. C., Matas, J., De Vicuña, L. G., & Castilla, M. (2010). Hierarchical control of droopcontrolled AC and DC microgrids - A general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158-172. https://doi.org/10.1109/TIE. 2010.2066534
[2]. Gupta, A., Doolla, S., & Chatterjee, K. (2018). Hybrid AC–DC microgrid: Systematic evaluation of control strategies. IEEE Transactions on Smart Grid, 9(4), 3830- 3843. https://doi.org/10.1109/TSG.2017.2727344
[3]. Jia, L., Zhu, Y., Du, S., & Wang, Y. (2018). Analysis of the transition between multiple operational modes for hybrid AC/DC microgrids. CSEE Journal of Power and Energy Systems, 4(1), 49-57. https://doi.org/10.17775/CSEEJPES. 2016.01030
[4]. Khan, O., Acharya, S., Al Hosani, M., & El Moursi, M. S. (2017). Hill climbing power flow algorithm for hybrid DC/AC microgrids. IEEE Transactions on Power Electronics, 33(7), 5532-5537. https://doi.org/10.1109/TPEL.2017. 2779238
[5]. Liu, F., Kang, Y., Zhang, Y., & Duan, S. (2008, June). Comparison of P&O and hill climbing MPPT methods for rd grid-connected PV converter. In 2008 3rd IEEE Conference on Industrial Electronics and Applications (pp. 804-807). IEEE. https://doi.org/10.1109/ICIEA.2008.4582626
[6]. Ma, T., Cintuglu, M. H., & Mohammed, O. (2015, October). Control of hybrid AC/DC microgrid involving energy storage, renewable energy and pulsed loads. In 2015 IEEE Industry Applications Society Annual Meeting (pp. 1-8). IEEE. https://doi.org/10.1109/IAS.2015.7356857
[7]. Mahmoud, M. S., Alyazidi, N. M., & Abouheaf, M. I. (2017). Adaptive intelligent techniques for microgrid control systems: A survey. International Journal of Electrical Power & Energy Systems, 90, 292-305. https://doi.org/10.1016/j.ijepes.2017.02.008
[8]. Ordono, A., Unamuno, E., Barrena, J. A., & Paniagua, J. (2019). Interlinking converters and their contribution to primary regulation: A review. International Journal of Electrical Power & Energy Systems, 111, 44-57. https://doi.org/10.1016/j.ijepes.2019.03.057
[9]. Sahoo, S. K., Sinha, A. K., & Kishore, N. K. (2017). Control techniques in AC, DC, and hybrid AC–DC microgrid: A review. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(2), 738-759. https://doi.org/10.1109/JESTPE.2017.2786588
[10]. Siad, S. B., Malkawi, A., Damm, G., Lopes, L., & Dol, L. G. (2019). Nonlinear control of a DC MicroGrid for the integration of distributed generation based on different time scales. International Journal of Electrical Power & Energy Systems, 111, 93-100. https://doi.org/10.1016/ j.ijepes.2019.03.073
[11]. Suryad, V. A., Doolla, S., & Chandorkar, M. (2017). Microgrids in India: Possibilities and challenges. IEEE Electrification Magazine, 5(2), 47-55. https://doi.org/10. 1109/MELE.2017.2685880
[12]. Unamuno, E., & Barrena, J. A. (2015a). Hybrid ac/dc microgrids - Part I: Review and classification of topologies. Renewable and Sustainable Energy Reviews, 52, 1251- 1259. https://doi.org/10.1016/j.rser.2015.07.194
[13]. Unamuno, E., & Barrena, J. A. (2015b). Hybrid ac/dc microgrids - Part II: Review and classification of control strategies. Renewable and Sustainable Energy Reviews, 52, 1123-1134. https://doi.org/10.1016/j.rser.2015.07.186
[14]. Wang, P., Jin, C., Zhu, D., Tang, Y., Loh, P. C., & Choo, F. H. (2014). Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid. IEEE Transactions on Industrial Electronics, 62(2), 1279-1290. https://doi.org/10.1109/TIE.2014.2347913
[15]. Yoo, H. J., Nguyen, T. T., & Kim, H. M. (2019). Consensus-based distributed coordination control of hybrid AC/DC microgrids. IEEE Transactions on Sustainable Energy. 1-9. https://doi.org/10.1109/TSTE.2019.2899119
[16]. Zhou, Q., Shahidehpour, M., Li, Z., & Xu, X. (2018). Two-layer control scheme for maintaining the frequency and the optimal economic operation of hybrid AC/DC microgrids. IEEE Transactions on Power Systems, 34(1), 64- 75. https://doi.org/10.1109/TPWRS.2018.2864285