References
[1]. Ahmed, I. N., & Chaya, P. (2014). Segmentation and classification of skin cancer images. International Journal of Advanced Research in Computer Science and Software Engineering, 4(5),1349-1353.
[2]. Ali, A. R. A., & Deserno, T. M. (2012, February). A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data. In Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment (Vol. 8318, p. 83181I). International Society for Optics and Photonics. https://doi.org/10.1117/12.912389
[3]. Barata, C., Ruela, M., Francisco, M., Mendonça, T., & Marques, J. S. (2013). Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Systems Journal, 8(3), 965-979. https://doi.org/10.1109/JSYST.2013.2271540
[4]. Hoshyar, A. N., Al-Jumaily, A., & Sulaiman, R. (2011, June). Review on automatic early skin cancer detection. In 2011 International Conference on Computer Science and Service System (CSSS) (pp. 4036-4039). IEEE. https://doi.org/10.1109/CSSS.2011.5974581
[5]. Indira, D. N. V. S. L. S., & Suprya, P. J. (2011). Detection & analysis of skin cancer using wavelet techniques. International Journal of Computer Science and Information Technologies, 2(5), 1927-1932.
[6]. Jadhav, S. R., Kamat, D. K. (2014). Segmentation based detection of skin cancer. IRF International Conference.
[7]. Jaleel, J. A., Salim, S., & Aswin, R. B. (2013, March). Computer aided detection of skin cancer. In 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT) (pp. 1137-1142). IEEE. https://doi.org/10.1109/ICCPCT.2013.6528879
[8]. Mahmoud, M. K. A., Al-Jumaily, A., & Takruri, M. (2011, December). The automatic identification of melanoma by wavelet and curvelet analysis: Study based on neural network classification. In 2011 11th International Conference on Hybrid Intelligent Systems (HIS) (pp. 680- 685). IEEE. https://doi.org/10.1109/HIS.2011.6122188
[9]. Ramya, V. J., Navarajan, J., Prathipa, R., & Kumar, L. A. (2015). Detection of melanoma skin cancer using digital camera images. ARPN Journal of Engineering and Applied Sciences, 10(7), 3082-3085.
[10]. Ruiz, D., Berenguer, V., Soriano, A., & SáNchez, B. (2011). A decision support system for the diagnosis of melanoma: A comparative approach. Expert Systems with Applications, 38(12), 15217-15223. https://doi.org/ 10.1016/j.eswa.2011.05.079
[11]. Sadeghi, M., Razmara, M., Lee, T. K., & Atkins, M. S. (2011). A novel method for detection of pigment network in dermoscopic images using graphs. Computerized Medical Imaging and Graphics, 35(2), 137-143. https://doi.org/10.1016/j.compmedimag.2010.07.002
[12]. Salah, B., Alshraideh, M., Beidas, R., & Hayajneh, F. (2011). Skin cancer recognition by using a neuro-fuzzy system. Cancer Informatics, 10, CIN-S5950.
[13]. Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109-118. https://doi.org/10.1016 /0893-6080(90)90049-Q