4C, SiC, Al2O3, fly ash, basalt, etc.)particulate reinforced AMMCs. The effects of weight or volume fraction and particles size of the reinforcement on the properties of AMMCs have been discussed in a brief manner. The stir casting process affects the properties and is the most commonly used method for the development of particulate reinforced Metal Matrix Composite (MMC) due to its simplicity and cost effectiveness.

">

Mechanical, Tribological and Corrosion Behaviour of Aluminium Alloys and Particulate Reinforced Aluminium or Aluminium Alloy Metal Matrix Composites - A Review

Murlidhar Patel*, Sushanta Kumar Sahu **, Mukesh Kumar Singh ***
*,***Department of Industrial and Production Engineering, Institute of Technology Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India.
** Department of Mechanical Engineering, National Institute of Science and Technology, Berhampur, Odisha, India.
Periodicity:July - September'2020
DOI : https://doi.org/10.26634/jms.8.2.16759

Abstract

This paper presents the survey of the particulate reinforced Aluminium Metal Matrix Composites (AMMCs) published in the past two decades. The properties of AMMCs are better than the base aluminium (Al) or its alloy matrix. Due to its advantageous properties it can be used in aerospace, automobile, sports, and marine application. This paper reported the pioneering work carried out by researchers in the field of Al alloys and particulate reinforced AMMCs mainly focusing on the mechanical, tribological and corrosion behaviour of various non-metallics (i.e. B4C, SiC, Al2O3, fly ash, basalt, etc.)particulate reinforced AMMCs. The effects of weight or volume fraction and particles size of the reinforcement on the properties of AMMCs have been discussed in a brief manner. The stir casting process affects the properties and is the most commonly used method for the development of particulate reinforced Metal Matrix Composite (MMC) due to its simplicity and cost effectiveness.

Keywords

Composite, MMC, SiC,B4C, Al2O3, Fly ash, Wear, Corrosion.

How to Cite this Article?

Patel, M., Sahu, S. K., and Singh, M. K. (2020). Mechanical, Tribological and Corrosion Behaviour of Aluminium Alloys and Particulate Reinforced Aluminium or Aluminium Alloy Metal Matrix Composites - A Review. i-manager's Journal on Material Science, 8(2), 40-55. https://doi.org/10.26634/jms.8.2.16759

References

[1]. Abd El-Aziz, K., Saber, D., & Sallam, H. E. D. M. (2015). Wear and corrosion behavior of Al–Si matrix composite reinforced with alumina. Journal of Bio- and Tribo- Corrosion, 1(1), 1-10. https://doi.org/10.1007/s40735-014- 0005-5
[2]. Agbeleye, A. A., Esezobor, D. E., Balogun, S. A., Agunsoye, J. O., Solis, J., & Neville, A. (2020). Tribological properties of aluminium-clay composites for brake disc rotor applications. Journal of King Saud University-Science, 32(1), 21-28. https://doi.org/10.1016/j.jksus.2017.09.002
[3]. Akbari, M., Shojaeefard, M. H., Asadi, P., & Khalkhali, A. (2019). Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 790-799. https://doi.org/10.1177%2F1464420717702413
[4]. Anas, N. M., Umar, Z. A. A., Zuhailawati, H., & Anasyida, A. S. (2017). Effect of post annealing temperatures on microstructures and mechanical properties of cryorolled 5052 aluminium sheet alloy. In AIP Conference Proceedings, (Vol. 1865, No. 1, p. 030006). AIP Publishing LLC.
[5]. Aniban, N., Pillai, R. M., & Pai, B. C. (2002). An analysis of impeller parameters for aluminium metal matrix composites synthesis. Materials & Design, 23(6), 553-556. https://doi.org/10.1016/S0261-3069(02)00024-9
[6]. Annigeri, U. K., & Veeresh Kumar, G. B. (2017). Method of stir casting of aluminum metal matrix composites: A review. Materials Today: Proceedings, 4(2), 1140-1146.
[7]. Babalola, P. O., Bolu, C., Inegbenebor, A. O., & Odunfa, K. M. (2014). Development of aluminium matrix composites: A review. Online International Journal of Engineering and Technology Research, 2, 1-11.
[8]. Bai, W., Roy, A., Sun, R., & Silberschmidt, V. V. (2019). Enhanced machinability of SiC-reinforced metal-matrix composite with hybrid turning. Journal of Materials Processing Technology, 268, 149-161. https://doi.org/10.1 016/j.jmatprotec.2019.01.017
[9]. Bera, T., & Acharya, S. K. (2019). Utilization of fly ash cenosphere as reinforcement for abrasive wear behaviour of LM6 Al alloy metal matrix composites. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(2), 273-280. https://doi.org/10.1007/s40 997-017-0132-y
[10]. Bharathi, V., Ramachandra, M., & Srinivas, S. (2017). Influence of Fly Ash content in Aluminium matrix composite produced by stir-squeeze casting on the scratching abrasion resistance, hardness and density levels. Materials Today: Proceedings, 4(8), 7397-7405. https://doi.org/10.10 16/j.matpr.2017.07.070
[11]. Bienia, J., Walczak, M., Surowska, B., & Sobczaka, J. (2003). Microstructure and corrosion behaviour of aluminum fly ash composites. Journal of Optoelectronics and Advanced Materials, 5(2), 493-502.
[12]. Boopathy, S., & Prasath, K. M. (2017). Structure– property correlation of Al–SiC–Al2O3 composites: influence of processing temperatures. Transactions of the Indian Institute of Metals, 70(9), 2441-2447. https://doi.org/ 10.1007/s12666-017-1105-y
[13]. Chen, Z. Z., & Tokaji, K. (2004). Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites. Materials Letters, 58(17-18), 2314-2321. https://doi.org/10. 1016/j.matlet.2004.02.034
[14]. Dai, K., Villegas, J., Stone, Z., & Shaw, L. (2004). Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Materialia, 52(20), 5771-5782. https://doi. org/10.1016/j.actamat.2004.08.031
[15]. Debnath, S., Oo, Z., Rahman, M., Maleque, M., & Tan, C. (2012). Physio-mechanical properties of aluminium metal matrix composites reinforced with Al O and SiC. 2 3 International Journal of Engineering and Applied Sciences, 6, 288-291.
[16]. Dey, A., & Pandey, K. M. (2016). Characterization of fly ash and its reinforcement effect on metal matrix composites: A review. Reviews on Advanced Materials Science, 44(2), 168-181.
[17]. Dikici, B., Bedir, F., Gavgali, M., & Kiyak, T. (2009). Corrosion characteristics of Al-Cu/B C (T6) MMCs and their microstructure evaluation. Kovove Mater, 47(5), 317-323.
[18]. Dix Jr, E. H., Anderson, W. A., & Shumaker, M. B. (1959). Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion. Corrosion, 15(2), 19-26. https://doi.org/10.5006/0010- 9312-15.2.19
[19]. El-Galy, I. M., Ahmed, M. H., & Bassiouny, B. I. (2017). Characterization of functionally graded Al-SiCp metal matrix composites manufactured by centrifugal casting. Alexandria Engineering Journal, 56(4), 371-381. https://doi.org/10.1016/j.aej.2017.03.009
[20]. Ezuber, H., El-Houd, A., & El-Shawesh, F. (2008). A study on the corrosion behavior of aluminum alloys in seawater. Materials & Design, 29(4), 801-805. https://doi.org/10. 1016/j.matdes.2007.01.021
[21]. Feng, Y. C., Geng, L., Zheng, P. Q., Zheng, Z. Z., & Wang, G. S. (2008). Fabrication and characteristic of Albased hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Materials & Design, 29(10), 2023-2026. https://doi.org/ 10.1016/j.matdes.2008.04.006
[22]. Gaitonde, V. N., Karnik, S. R., & Jayaprakash, M. S. (2012). Some studies on wear and corrosion properties of Al5083/Al O /graphite hybrid composites. Journal of 2 3 Minerals and Materials Characterization and Engineering, 11(07), 695-703.
[23]. Harichandran, R., & Selvakumar, N. (2016). Effect of nano/micro B C particles on the mechanical properties of 4 aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Archives of Civil and Mechanical Engineering, 16, 147- 158. https:// doi.org/10.1016/j.acme.2015.07.001
[24]. Hariprasad, T., Varatharajan, K., & Ravi, S. (2014). Wear characteristics of B C and Al O reinforced with Al 4 2 3 5083 metal matrix based hybrid composite. Procedia Engineering, 97, 925-929. https://doi.org/10.1016/j.pro eng.2014.12.368
[25]. Hashim, J., Looney, L., & Hashmi, M. S. J. (1999). Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology, 92, 1-7. https://doi.org/10.1016/S0924-0136(99)00118-1
[26]. Idrisi, A. H., & Mourad, A. H. I. (2017, July). Fabrication and wear analysis of aluminium matrix composite reinforced by SiC micro and nano particles. In Proceedings of the ASME 2017 Pressure Vessels and Piping Conference (Vol. 57991, p. V06AT0 6A033).ASME. https://doi.org/10. 1115/PVP2017-65459
[27]. Jawalkar, C. S., Verma, A. S., & Suri, N. M. (2017). Fabrication of aluminium metal matrix composites with particulate reinforcement: A review. Materials Today: Proceedings, 4(2), 2927-2936. https://doi.org/10.1016/j. matpr.2017.02.174
[28]. Jayashree, P. K., Shankar, M. G., Kini, A., Sharma, S. S., & Shetty, R. (2013). Review on effect of silicon carbide (SiC) on stir cast aluminium metal matrix composites. International Journal of Current Engineering and Technology, 3(3), 1061-1071.
[29]. Jones, R. M. (1998). Mechanics of Composite Materials. CRC Press.
[30]. Kandpal, B. C., & Singh, H. (2017). Fabrication and characterisation of Al O /aluminium alloy 6061 composites 2 3 fabricated by Stir casting. Materials Today: Proceedings, 4(2), 2783-2792. https://doi.org/10.1016/j.matpr.2017. 02.157
[31]. Karamis, M. B., Tasdemirci, A., & Nair, F. E. H. M. İ. (2003). Failure and tribological behaviour of the AA5083 and AA6063 composites reinforced by SiC particles under ballistic impact. Composites Part A: Applied Science and Manufacturing, 34(3), 217-226. https://doi.org/10.1016/S1 359-835X(03)00024-1
[32]. Kaw, A. K. (2006). Mechanics of Composite Materials. CRC Press.
[33]. Kök, M., & Özdin, K. (2007). Wear resistance of aluminium alloy and its composites reinforced by Al O 2 3 particles. Journal of Materials Processing Technology, 183(2-3), 301-309. https://doi.org/10.1016/j.jmatprotec. 2006.10.021
[34]. Kumar, S. M., Pramod, R., & Govindaraju, H. K. (2017). Evaluation of mechanical and wear properties of aluminium AA430 reinforced with SiC and Mgo. Materials Today: Proceedings, 4(2), 509-518. https://doi.org/10.1016 /j.matpr.2017.01.051
[35]. Kumar, S. S., Rao, K. P., & Girish, D. P. (2013). Corrosionerosion wear analysis of Al/SiC metal matrix composites by taguchi's technique. International Journal of Advanced Engineering and Technology, 4(1), 23-26.
[36]. Kumaravel, S., & Mohanraj, D. (2015). Channankaiah production and mechanical properties of fly ash and basalt ash reinforced Al 6061composites. History, 16(49), 10-15.
[37]. Lee, K. B., Sim, H. S., Kwon, H., & Cho, S. Y. (2001). Tensile properties of 5052 Al Matrix composites reinforced with B4C particles. Metallurgical and Materials Transactions A, 32(8), 2142-2147.
[38]. Liu, Q., Wang, F., Wu, W., An, D., He, Z., Xue, Y., ... & Xie, Z. (2019). Enhanced mechanical properties of SiC/Al composites at cryogenic temperatures. Ceramics International, 45(3), 4099-4102. https://doi.org/10.1016/j. ceramint.2018.10.233
[39]. Mahendra, K. V., & Radhakrishna, K. (2007). Fabrication of Al-4.5% Cu alloy with fly ash metal matrix composites and its characterization. Materials Science- Poland, 25(1), 57-68.
[40]. Mahendra, K. V., & Radhakrishna, K. (2010). Characterization of stir cast Al—Cu—(fly ash+ SiC) hybrid metal matrix composites. Journal of Composite Materials, 44(8), 989-1005. https://doi.org/10.1177%2F002199830 934 6386
[41]. Manivannan, I., Ranganathan, S., Gopalakannan, S., Suresh, S., Nagakarthigan, K., & Jubendradass, R. (2017). Tribological and surface behavior of silicon carbide reinforced aluminum matrix nanocomposite. Surfaces and Interfaces, 8, 127-136. https://doi.org/10.1016/j.su rfin.2017.05.007
[42]. Marimuthu, M., & Berchmans, L. J. (2013). Preparation and characterization of B C particulate reinforced Al-Mg 4 alloy matrix composites. International Journal of Modern Engineering Research (IJMER), 3, 14-19.
[43]. Meyer-Rodenbeck, G., Hurd, T., & Ball, A. (1992). On the abrasive-corrosive wear of aluminium alloys. Wear, 154(2), 305-317. https://doi.org/10.1016/0043-1648(92) 90161-Z
[44]. Muraliraja, R., Arunachalam, R., Al-Fori, I., Al- Maharbi, M., & Piya, S. (2019). Development of alumina reinforced aluminum metal matrix composite with enhanced compressive strength through squeeze casting process. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(3), 307-314.
[45]. Muthazhagan, C., Gnanavelbabu, A., Rajkumar, K., & Bhaskar, G. B. (2014). Corrosion behavior of aluminiumboron carbide-graphite composites. Applied Mechanics and Materials, 591, 51–54.
[46]. Nagaral, M., Auradi, V., Kori, S. A., Reddappa, H. N., Jayachandran, & Shivaprasad, V. (2017, July). Studies on 3 and 9 wt.% of B C particulates reinforced Al7025 alloy 4 composites. In AIP Conference Proceedings (Vol. 1859, No. 1, p. 020019). AIP Publishing LLC. https://doi.org/10.106 3/1.4990172
[47]. Nai, S. M. L., & Gupta, M. (2003). Synthesis and characterization of free standing, bulk Al/SiCp functionally gradient materials: Effects of different stirrer geometries. Materials Research Bulletin, 38(11-12), 1573-1589.
[48]. Nieto, A., Yang, H., Jiang, L., & Schoenung, J. M. (2017). Reinforcement size effects on the abrasive wear of boron carbide reinforced aluminum composites. Wear, 390, 228-235. https://doi.org/10.1016/j.wear.2017.08.002
[49]. Ozben, T., Kilickap, E., & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology, 198(1-3), 220-225. https://doi.org/10.1016/j.j matprotec.2007.06.082
[50]. Patel, M., Pardhi, B., Chopara, S., & Pal, M. (2018). Lightweight composite materials for automotive - A review. International Research Journal of Engineering and Technology, 5(11), 41–47.
[51]. Patel, M., Pardhi, B., Pal, M., & Singh, M. K. (2019). SiC particulate reinforced aluminium metal matrix composite. Advanced Journal of Graduate Research, 5(1), 8-15. https://doi.org/10.21467/ajgr.5.1.8-15
[52]. Patel, M., Pardhi, B., Sahu, S. K., Kumar, A., & Singh, M. K. (2019). Evaluation of hardness, toughness and sliding wear resistance after replacing Zn into SiC in Al5Mg5Zn/3WO 3-p metal matrix composite. International Journal for Research in Engineering Application & Management, 5(03), 106-110.
[53]. Prabu, S. B., Karunamoorthy, L., Kathiresan, S., & Mohan, B. (2006). Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. Journal of Materials Processing Technology, 171(2), 268-273. https://doi.org/10.1016/j.jmatprotec.20 05.06.071
[54]. Pradhan, S., Barman, T. K., Sahoo, P., & Sutradhar, G. (2017). Effect of SiC weight percentage on tribological properties of Al-SiC metal matrix composites under acid environment. Jurnal Tribologi, 13, 21-35.
[55]. Pradhan, S., Ghosh, S., Barman, T. K., & Sahoo, P. (2017). Tribological behavior of Al-SiC metal matrix composite under dry, aqueous and alkaline medium. Silicon, 9(6), 923-931. https://doi.org/10.1007/s12633-016- 9504-y
[56]. Previtali, B., Pocci, D., & Taccardo, C. (2008). Application of traditional investment casting process to aluminium matrix composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1606-1617. https:// doi.org/10.1016/j.compositesa.2008.07.001
[56]. Previtali, B., Pocci, D., & Taccardo, C. (2008). Application of traditional investment casting process to aluminium matrix composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1606-1617. https:// doi.org/10.1016/j.compositesa.2008.07.001
[58]. Ramachandra, M., & Radhakrishna, K. (2006). Sliding wear, slurry erosive wear, and corrosive wear of aluminium/SiC composite. Materials Science-Wroclaw, 24(2/1), 333-349.
[59]. Ramachandra, M., & Radhakrishna, K. (2007). Effect of reinforcement of flyash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite. Wear, 262(11-12), 1450-1462. https://doi.org/ 10.1016/j.wear.2007.01.026
[60]. Ramnath, B. V., Elanchezhian, C., Annamalai, R. M., Aravind, S., Atreya, T. S. A., Vignesh, V., & Subramanian, C. (2014). Aluminium metal matrix composites – A review. Reviews on Advanced Materials Science, 38(5), 55-60.
[61]. Rao, J. B., Rao, D. V., Murthy, I. N., & Bhargava, N. R. M. R. (2012). Mechanical properties and corrosion behaviour of fly ash particles reinforced AA 2024 composites. Journal of Composite Materials, 46(12), 1393-1404.
[62]. Rao, S. R., & Padmanabhan, G. (2012). Fabrication and mechanical properties of aluminium-boron carbide composites. International Journal of Materials and Biomaterials Applications, 2(3), 15-18.
[63]. Rao, T. B. (2018). An experimental investigation on mechanical and wear properties of Al7075/SiCp composites: effect of SiC content and particle size. Journal of Tribology, 140(3). https://doi.org/10.1115/1.4037845
[64]. Ravindranath, V. M., Shankar, G. S., Basavarajappa, S., & Kumar, N. S. (2017). Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles. Materials Today: Proceedings, 4(10), 11163-11167.
[65]. Sadagopan, P., Natarajan, H. K., & Kumar, P. (2018). Study of silicon carbide-reinforced aluminum matrix composite brake rotor for motorcycle application. The International Journal of Advanced Manufacturing Technology, 94(1-4), 1461-1475. https://doi.org/10.1007 /s00170-017-0969-7
[66]. Senthilkumar, N., Tamizharasan, T., & Anbarasan, M. (2014). Mechanical characterization and tribological behaviour of Al-Gr-B C metal matrix composite prepared 4 by stir casting technique. Journal of Advanced Engineering Research, 1(1), 48-59.
[67]. Sharifitabar, M., Sarani, A., Khorshahian, S., & Afarani, M. S. (2011). Fabrication of 5052Al/Al O nanoceramic 2 3 particle reinforced composite via friction stir processing route. Materials & Design, 32(8-9), 4164-4172. https://doi. org/10.1016/j.matdes.2011.04.048
[68]. Sharma, V. K., Singh, R. C., & Chaudhary, R. (2017). Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites. Engineering Science and Technology, an International Journal, 20(4), 1318- 1323. https://doi.org/10.1016/j.jestch.2017.08.004
[69]. Shorowordi, K. M., Laoui, T., Haseeb, A. A., Celis, J. P., & Froyen, L. (2003). Microstructure and interface characteristics of B C, SiC and Al O reinforced Al matrix 4 2 3 composites: a comparative study. Journal of Materials Processing Technology, 142(3), 738-743. https://doi.org/ 10.1016/S0924-0136(03)00815-X
[70]. Shorowordi, K. M., Laoui, T., Haseeb, A. A., Celis, J. P., & Froyen, L. (2003). Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. Journal of Materials Processing Technology, 142(3), 738-743. https://doi.org/ 10.1016/S0924-0136(03)00815-X
[71]. Surappa, M. K. (2008). Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Materials Science and Engineering: A, 480(1-2), 117-124. https://doi.org/10.1016/j.msea.2007.06.068
[72]. Suresh, S., Gowd, G. H., & Kumar, M. D. (2019). Tribological behavior of Al 7075/SiC metal matrix nanocomposite by stir casting method. Journal of the Institution of Engineers (India): Series D, 100(1), 97-103. https://doi.o rg/10.1007/s40033-018-0167-2
[73]. Szklarska-Smialowska, Z. (1999). Pitting corrosion of aluminum. Corrosion Science, 41(9), 1743-1767. https:// doi.org/10.1016/S0010-938X(99)00012-8
[74]. Tang, F., Wu, X., Ge, S., Ye, J., Zhu, H., Hagiwara, M., & Schoenung, J. M. (2008). Dry sliding friction and wear properties of B C particulate-reinforced Al-5083 matrix 4 composites. Wear, 264(7-8), 555-561. https://doi.org/10. 1016/j.wear.2007.04.006
[75]. Uzkut, M. (2013). Abrasive wear behaviour of SiCpreinforced 2011 Al-alloy composites. Material Technology, 47(5), 635–638.
[76]. Vannan, S., & Vizhian, S. P. (2014a). Dry sliding wear behaviour of basalt short fiber reinforced aluminium metal matrix composites. In Applied Mechanics and Materials (Vol. 592, pp. 1285-1290). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.592- 594.1285
[77]. Vannan, S. E., & Vizhian, S. P. (2014b). Microstructure and mechanical properties of as cast aluminium alloy 7075/basalt dispersed metal matrix composites. Journal of Minerals and Materials Characterization and Engineering, 2(3), 182-193.
[78]. Vannan, S., & Simson, P. V. (2014). Corrosion behaviour of short basalt fiber reinforced with Al7075 metal matrix composites in sodium chloride alkaline medium. Journal of Chemical Engineering and Chemistry Research, 1(2), 122-131.
[79]. Venkatachalam, G., & Kumaravel, A. (2017). Mechanical behaviour of aluminium alloy reinforced with SiC/fly ash/basalt composite for brake rotor. Polymers and Polymer Composites, 25(3), 203-208.
[80]. Zhang, Z. F., Zhang, L. C., & Mai, Y. W. (1995). Wear of ceramic particle-reinforced metal-matrix composites. Journal of Materials Science, 30(8), 1961-1966. https://doi. org/10.1007/BF00353018
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.