References
[1]. Aiswarya, V., Raju, N. N., Joy, S. S. J., Nagarajan, T., & Vijayalakshmi, P. (2018, March). Hidden Markov Model-based Sign Language to Speech Conversion System In Tamil. In 2018 Fourth International Conference on Biosignals, Images and Instrumentation (ICBSII) (pp. 206- 212). IEEE. https://doi.org/10.1109/ICBSII.2018.8524802
[2]. Avola, D., Bernardi, M., Cinque, L., Foresti, G. L., & Massaroni, C. (2018). Exploiting recurrent neural networks and leap motion controller for the recognition of sign language and semaphoric hand gestures. IEEE Transactions on Multimedia, 21(1), 234-245. https://doi. org/10.1109/TMM.2018.2856094
[3]. Bao, P., Maqueda, A. I., del-Blanco, C. R., & García, N. (2017). Tiny hand gesture recognition without localization via a deep convolutional network. IEEE Transactions on Consumer Electronics, 63(3), 251-257. https://doi.org/ 10.1109/tce.2017.014971
[4]. Chakraborty, B. K., Sarma, D., Bhuyan, M. K., & MacDorman, K. F. (2017). Review of constraints on vision-based gesture recognition for Human-Computer Interaction. IET Computer Vision, 12(1), 3-15. https://doi. org/10.1049/iet-cvi.2017.0052
[5]. Cui, R., Liu, H., & Zhang, C. (2019). A deep neural framework for continuous sign language recognition by iterative training. IEEE Transactions on Multimedia, 21( 7), 1880-1891. https://doi.org/10.1109/TMM.2018.2889563
[6]. Dreuw, P., Rybach, D., Deselaers, T., Zahedi, M., & Ney, H. (2007). Speech recognition techniques for a sign language recognition system. In Eighth Annual Conference of the International Speech Communication Association, (pp. 2513-2516).
[7]. Elpeltagy, M., Abdelwahab, M., Hussein, M. E., Shoukry, A., Shoala, A., & Galal, M. (2018). Multi-modality- based Arabic sign language recognition. IET Computer Vision, 12(7), 1031-1039. https://doi.org/10. 1049/iet-cvi.2017.0598
[8]. Ghotkar, A. S., Khatal, R., Khupase, S., Asati, S., & Hadap, M. (2012, January). Hand gesture recognition for Indian Sign Language. In 2012 International Conference on Computer Communication and Informatics (pp. 1-4). IEEE. https://doi.org/10.1109/ICCCI.2012.6158807
[9]. Hussain, S., Saxena, R., Han, X., Khan, J. A., & Shin, H. (2017). Hand gesture recognition using deep learning. 2017 International SoC Design Conference (ISOCC). https://doi.org/10.1109/isocc.2017.8368821
[10]. Jimenez, J., Martin, A., Uc, V., & Espinosa, A. (2017). Mexican Sign Language Alphanumerical gestures recognition using 3D Haar-like Features. IEEE Latin America Transactions, 15(10), 2000-2005. https://doi.org/ 10.1109/TLA.2017.8071247
[11]. Lee, D., Yoon, H., & Kim, J. (2016). Continuous gesture recognition by using gesture spotting. 2016 16th International Conference on Control, Automation and Systems (ICCAS). https://doi.org/10.1109/iccas.2016.78 32502
[12]. Shenoy, K., Dastane, T., Rao, V., & Vyavaharkar, D. (2018, July). Real-time Indian Sign Language (ISL) Recognition. In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-9). IEEE. https://doi.org/ 10.1109/ICCCNT.2018.8493808
[13]. Simão, M. A., Neto, P., & Gibaru, O. (2016). Unsupervised gesture segmentation by motion detection of a real-time data stream. IEEE Transactions on Industrial Informatics, 13(2), 473-481. https://doi.org/10.1109/TII. 2016.2613683
[14]. Truong, V. N., Yang, C. K., & Tran, Q. V. (2016, October). A translator for American sign language to text and speech. In 2016 IEEE 5th Global Conference on Consumer Electronics (pp. 1-2). IEEE. https://doi.org/10. 1109/GCCE.2016.7800427
[15]. Wu, D., Pigou, L., Kindermans, P.-J., Le, N. D.-H., Shao, L., Dambre, J., & Odobez, J.-M. (2016). Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(8), 1583- 1597. https://doi.org/ 10.1109/tpami.2016.2537340
[16]. Wu, Y., Wu, Z., & Fu, C. (2018). Continuous Arm Gesture Recognition Based on Natural Features and Logistic Regression. IEEE Sensors Journal, 18(19), 8143- 8153. https://doi.org/10.1109/JSEN.2018.2863044