References
[1]. Abbas, N., & Muhamad, D. (2014). Auccuarte red blood cells automatic counting in microscopic thin blood smear digital images. Science International Lahore, 26(3), 1119-1124.
[2]. Abbas, N., Abdul, A. H., Zulkifli, M., & Ayman, A. (2015). Clustered red blood cells splitting via boundary analysis in microscopic thin blood smear digital images. International Journal of Technology, 6(3), 306-317. https://doi.org/10.14716/ijtech.v6i3.522
[3]. Acharjee, S., Chakrabartty, S., Alam, M. I., Dey, N., Santhi, V., & Ashour, A. S. (2016, March). A semiautomated approach using GUI for the detection of red blood cells. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 525-529). IEEE. https://doi.org/10.1109/ ICEEOT.2016.7755669
[4]. Acharjya, P. P., Murherjee, S., & Ghoshal, D. (2014). Digital image segmentation using median filtering and morphological approach. International Journal of Advanced Research Computer Science and Software Engineer, 4(1), 552-557.
[5]. Alotaibi, K. (2016). Sickle Blood cell Detection Based on Image Segmentation. Open Public Research Access Institutional Repository and Information Exchange, 1- 90. Retrieved from http://openprairie.sdstate.edu/etd/ 1116
[6]. Aruna, N. S., & Hariharan, S. (2014). Edge detection of sickle cells in red blood cells. International Journal of Computer Science and Information Technologies (IJCSIT), 5(3), 4140-4144.
[7]. Bala, A. (2012). An improved watershed image segmentation technique using MATLAB. International Journal of Scientific and Engineering Research, 3(6), 1-4.
[8]. Bala, S., & Doegar, A. (2015). Automatic detection of sickle cell in red blood cell using watershed segmentation. International Journal of Advanced Research in Computer and Communication Engineering, 4(6), 488-491. https://doi.org/10.17148/ IJARCCE.2015.46105
[9]. Chintawar, I. A., Aishvarya, M., & Kuhikar, C. (2016). Detection of sickle cells using image processing. International Journal of Science Technology Engineering, 2(9), 335-339.
[10]. Chourasiya, S., & Rani, G. U. (2014). Automatic red blood cell counting using Watershed Segmentation. International Journal of Computer Science and Information Technologies, 5(4), 4834-4838.
[11]. Dalvi, P. T., & Vernekar, N. (2016, May). Computer aided detection of abnormal red blood cells. In 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 1741-1746). IEEE. https://doi.org/10.1109/ RTEICT.2016.7808132
[12]. Hariharan, S., & Aruna, N. S. (2016). Pre-processing of sickle cell anemia images. International Journal of Innovative Research in Computer and Communication Engineering, 4(11), 19092-19099. https://doi.org/10. 15680/IJIRCCE.2016. 0411017
[13]. Karthikeyan, K., & Brharama, K. (2015). Detection and counting of red blood cells using hough transform technique. International Journal of Advances in Engineering, 1(8), 622-625.
[14]. Kaur, A., Verma, A., & Derabassi, S. (2013). The Marker-based watershed segmentation - A review. International Journal of Engineering and Innovation Technology (IJEIT), 3(3), 171 -174.
[15]. Khawaldeh, B. A. I. (2013). Developing a computerbased information system to improve the diagnosis of blood anemia. Department of Computer Information Systems Faculty of Information Technology. Middle East University, Amman, Jordan, 116.
[16]. Mahmood, N. H., & Mansor, M. A. (2012). Red blood cells estimation using hough transform technique. Signal & Image Processing: An International Journal (SIPIJ), 3(2), 52-64. https://doi.org/10.5121/sipij.2012.3204
[17]. MathWorks. (2016a). Measure properties of image regions- MATL AB regionprops. Retrieved from https://www.mathworks.com/help/images/ref/regionprops.html
[18]. MathWork. (2016b). Remove small objects from binary image- MATLAB bwareaopen. Retrieved from https://www.mathworks.com/help/images/ref/bwareaopen.html?s_tid=srcht itle
[19]. MathWorks. (2016c). Regionprops (Image Processing Toolbox). Retrieved from https://edoras.sdsu. edu/doc/matlab/toolbox/images/regionprops.html
[20]. Mazalan, S. M., Mahmood, N. H., & Razak, M. A. A. (2013, December). Automated red blood cells counting in peripheral blood smear image using Circular Hough transform. In 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation (pp. 320- 324). IEEE. https://doi.org/10.1109/AIMS.2013.59
[21]. Patil, D. N., & Khot, U. P. (2015). Image processing based abnormal blood cells detection. International Journal of Technical Research and Applications, (31), 37- 43.
[22]. Rexcy, S. M. A., Akshaya, V. S., & Swetha, K. S. (2016). Effective use of image processing techniques for the detection of sickle cell anemia and presence of plasmodium parasites. International Journal of Advance Research and Innovative Ideas in Education, 2(2), 701- 706.
[23]. Safca, N., Popescu, D., Ichim, L., Elkhatib, H., & Chenaru, O. (2018, October). Image processing techniques to identify red blood cells. In 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC) (pp. 93-98). IEEE. https://doi.org/10. 1109/ICSTCC.2018.8540708
[24]. Sharma, P. (2017). Disease detection using blood smear analysis. International Journal of Computer Applications, 179(7), 41-44.
[25]. Sreekumar, A., & Bhattacharya, A. (2014). Identification of sickle cells from microscopic blood smear image using image processing. International Journal of Emerging Trends in Science and Technology, 1(05), 783-787.
[26]. Thanh, T. T. P., Vununu, C., Atoev, S., Lee, S. H., & Kwon, K. R. (2018). Leukemia blood cell image classification using convolutional neural network. International Journal of Computer Theory and Engineering, 10(2), 54-58. https://doi.org/10.7763/IJCTE. 2018.V10.1198
[27]. Thiruvinal, V. J., & Ram, S. P. (2017). Automated blood cell counting and classification using image processing. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 6(1), 74-82. https://doi.org/10.15662/IJAREEIE.2017.0601010
[28]. Tomari, R., Nurshzwani, W., Ngadengon, R., & Wahab, M. H. A. (2015). Red blood cell counting analysis by considering an overlapping constraint. Asian Research Publishing Network (ARPN), 10(3), 1413-1420.
[29]. University of Tartu. (2014). OpenScholar. Retrieved from https://sisu.ut.ee/imageprocessing/node/5253
[30]. Vignesh, U., & Loganathan, V. (2019). Extraction of blood cell image classification using convolution neural network. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 6(3), 167-173.