References
[1]. Arthanarieswaran, V. P., Kumaravel, A., & Kathirselvam,
M. (2014). Evaluation of mechanical properties of banana
and sisal fiber reinforced epoxy composites: Influence of
glass fiber hybridization. Materials & Design, 64,194-202.
https://doi.org/10.1016/j .matdes.2014.07.058
[2]. Barbosa Jr, V., Ramires, E. C., Razera, I. A. T., & Frollini, E.
(2010). Biobased composites from tannin–phenolic
polymers reinforced with coir fibers. Industrial Crops and
Products, 32(3), 305-312. https://doi.org/10.1016/
j.indcrop.2010.05.007
[3]. Beckermann, G. W., & Pickering, K. L. (2008).
Engineering and evaluation of hemp fibre reinforced
polypropylene composites: Fibre treatment and matrix
modification. Composites Part A: Applied Science and
Manufacturing, 39(6), 979-988. https://doi.org/ 10.1016/
j.compositesa.2008.03.010
[4]. Biswas, S., Shahinur, S., Hasan, M., & Ahsan, Q. (2015).
Physical, mechanical and thermal properties of jute and
bamboo fiber reinforced unidirectional epoxy composites.
Procedia Engineering, 105, 933-939. https://doi.org/
10.1016/j.proeng.2015.05.118
[5]. Brahmakumar, M., Pavithran, C., & Pillai, R. M. (2005).
Coconut fibre reinforced polyethylene composites: Effect
of natural waxy surface layer of the fibre on fibre/matrix
interfacial bonding and strength of composites.
Composites Science and Technology, 65(3-4), 563-569.
https://doi.org/10.1016/j.compscitech.2004.09.020
[6]. Deb, A., Das, S., Mache, A., & Laishram, R. (2017). A
study on the mechanical behaviors of jute-polyester
composites. Procedia Engineering,173, 631-638.
https://doi.org/10.1016/j.proeng.2016.12.120
[7]. Geethamma, V. G., Kalaprasad, G., Groeninckx, G., &
Thomas, S. (2005). Dynamic mechanical behavior of short
coir fiber reinforced natural rubber composites.
Composites Part A: Applied Science and Manufacturing,
36(11),1499-1506. https://doi.org/10.1016/j.compositesa
2005.03.004
[8]. Geethamma, V. G., Mathew, K. T., Lakshminarayanan, R., & Thomas, S. (1998). Composite of short coir fibres and
natural rubber: Effect of chemical modification, loading
and orientation of fibre. Polymer, 39(6-7), 1483-1491.
https://doi.org/10.1016/S0032-3861(97)00422-9
[9]. Herrera-Franco, P., & Valadez-Gonzalez, A. (2005). A
study of the mechanical properties of short natural-fiber
reinforced composites. Composites Part B: Engineering,
36(8), 597-608. https://doi.org/10.1016/j.composites
b.2005.04.001
[10]. Liu, W., Misra, M., Askeland, P., Drzal, L. T., & Mohanty,
A. K. (2005). 'Green' composites from soy based plastic
and pineapple leaf fiber: Fabrication and properties
evaluation. Polymer, 46(8), 2710-2721. https://doi.org/
10.1016/j.polymer.2005.01.027
[11]. Monteiro, S. N., Terrones, L. A. H., & D'almeida, J. R. M.
(2008). Mechanical performance of coir fiber/polyester
composites. Polymer Testing, 27(5), 591-595. https://
doi.org/10.1016/j.polymertesting.2008.03.003
[12]. Rojo, E., Alonso, M. V., Oliet, M., Del Saz-Orozco, B., &
Rodriguez, F. (2015). Effect of fiber loading on the
properties of treated cellulose fiber-reinforced phenolic
composites. Composites Part B: Engineering, 68, 185-192.
https://doi.org/10.1016/j.compositesb.2014.08.047
[13]. Rokbi, M., Osmani, H., Imad, A., & Benseddiq, N.
(2011). Effect of chemical treatment on flexure properties
of natural fiber-reinforced polyester composite. Procedia
Engineering,10(0), 2092-2097. https://doi.org/10.1016/j.pr
oeng.2011.04.346
[14]. Ruksakulpiwat, Y., Sridee, J., Suppakarn, N., &
Sutapun, W. (2009). Improvement of impact property of
natural fiber–polypropylene composite by using natural
rubber and EPDM rubber. Composites Part B: Engineering,
40(7), 619-622. https://doi.org/10.1016/j.cemconcomp.2009.02.006
[15]. Satyanarayana, K. G., Sukumaran, K., Kulkarni, A. G.,
Pillai, S. G. K., & Rohatgi, P. K. (1986). Fabrication and
properties of natural fibre-reinforced polyester composites.
Composites, 17(4), 329-333. https://doi.org/10.1016/0010-
4361(86)90750-0
[16]. Savastano Jr, H., Santos, S. F., Radonjic, M., &
Soboyejo, W. O. (2009). Fracture and fatigue of natural
fiber-reinforced cementitious composites. Cement and
Concrete Composites, 31(4), 232-243. https://doi.org/
10.1016/j.cemconcomp.2009.02.006
[17]. Sgriccia, N., Hawley, M. C., & Misra, M. (2008).
Characterization of natural fiber surfaces and natural fiber
composites. Composites Part A: Applied Science and
Manufacturing, 39(10), 1632-1637. https://doi.org/10.101
6/j.compositesa.2008.07.007
[18]. Virk, A. S., Hall, W., & Summerscales, J. (2010). Failure
strain as the key design criterion for fracture of natural fibre
composites. Composites Science and Technology, 70(6),
995-999. https://doi.org/10.1016/j.compscitech.201002.
018
[19]. Wu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q.
(2018). Development of natural fiber-reinforced
composite with comparable mechanical properties and
reduced energy consumption and environmental impacts
for replacing automotive glass-fiber sheet molding
compound. Journal of Cleaner Production, 184, 92-100.
https://doi.org/10.1016/j.jclepro.2018.02.257
[20]. Xia, C., Zhang, S., Shi, S. Q., Cai, L., & Huang, J.
(2016). Property enhancement of kenaf fiber reinforced
composites by in situ aluminum hydroxide impregnation.
Industrial Crops and Products, 79, 131-136.