Mechanical Properties of Hybrid Fiber Reinforced Epoxy Composites

R. Srinivasan *, Thirugnanam S.**
*-** Department of Mechanical Engineering, SRM Valliammai Engineering College, Chennai, Tamil Nadu, India.
Periodicity:November - January'2020
DOI : https://doi.org/10.26634/jme.10.1.16744

Abstract

Natural fibers possess vital benefits, such as low density, required stiffness, high disposability, and renewability. Additionally, they are recyclable and biodegradable. Banana fiber is, a natural fiber, obtained from the pseudo-stem of banana plant. Banana fiber has very high cellulose content. Its cost is very low and it is extensively available. It can also be easily blended with any material to obtain desired properties. Hence, it becomes a suitable option as a reinforcing material in polymer composites. The materials epoxy, hardener, banana fiber, and nylon fiber, are used and hand layup method is adopted to manufacture the composite. In this research, Banana fiber is mixed as reinforcement with nylon fiber in epoxy polymer composite. The weight fraction of banana fiber is 20% and 30%. The tensile strength, flexural strength, flexural modulus, and impact properties are studied through relevant experiments. It is observed that the above mechanical properties of hybrid natural fiber composites were increased with an increase in banana fiber weight fraction following rule of mixtures.

Keywords

Mechanical Properties, Hybrid Fiber Composites, Banana-Nylon-Epoxy Composite.

How to Cite this Article?

Srinivasan, R., and Thirugnanam. S. (2020). Mechanical Properties of Hybrid Fiber Reinforced Epoxy Composites. i-manager's Journal on Mechanical Engineering, 10(1), 32-40. https://doi.org/10.26634/jme.10.1.16744

References

[1]. Arthanarieswaran, V. P., Kumaravel, A., & Kathirselvam, M. (2014). Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Materials & Design, 64,194-202. https://doi.org/10.1016/j .matdes.2014.07.058
[2]. Barbosa Jr, V., Ramires, E. C., Razera, I. A. T., & Frollini, E. (2010). Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Industrial Crops and Products, 32(3), 305-312. https://doi.org/10.1016/ j.indcrop.2010.05.007
[3]. Beckermann, G. W., & Pickering, K. L. (2008). Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification. Composites Part A: Applied Science and Manufacturing, 39(6), 979-988. https://doi.org/ 10.1016/ j.compositesa.2008.03.010
[4]. Biswas, S., Shahinur, S., Hasan, M., & Ahsan, Q. (2015). Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites. Procedia Engineering, 105, 933-939. https://doi.org/ 10.1016/j.proeng.2015.05.118
[5]. Brahmakumar, M., Pavithran, C., & Pillai, R. M. (2005). Coconut fibre reinforced polyethylene composites: Effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Composites Science and Technology, 65(3-4), 563-569. https://doi.org/10.1016/j.compscitech.2004.09.020
[6]. Deb, A., Das, S., Mache, A., & Laishram, R. (2017). A study on the mechanical behaviors of jute-polyester composites. Procedia Engineering,173, 631-638. https://doi.org/10.1016/j.proeng.2016.12.120
[7]. Geethamma, V. G., Kalaprasad, G., Groeninckx, G., & Thomas, S. (2005). Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Composites Part A: Applied Science and Manufacturing, 36(11),1499-1506. https://doi.org/10.1016/j.compositesa 2005.03.004
[8]. Geethamma, V. G., Mathew, K. T., Lakshminarayanan, R., & Thomas, S. (1998). Composite of short coir fibres and natural rubber: Effect of chemical modification, loading and orientation of fibre. Polymer, 39(6-7), 1483-1491. https://doi.org/10.1016/S0032-3861(97)00422-9
[9]. Herrera-Franco, P., & Valadez-Gonzalez, A. (2005). A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering, 36(8), 597-608. https://doi.org/10.1016/j.composites b.2005.04.001
[10]. Liu, W., Misra, M., Askeland, P., Drzal, L. T., & Mohanty, A. K. (2005). 'Green' composites from soy based plastic and pineapple leaf fiber: Fabrication and properties evaluation. Polymer, 46(8), 2710-2721. https://doi.org/ 10.1016/j.polymer.2005.01.027
[11]. Monteiro, S. N., Terrones, L. A. H., & D'almeida, J. R. M. (2008). Mechanical performance of coir fiber/polyester composites. Polymer Testing, 27(5), 591-595. https:// doi.org/10.1016/j.polymertesting.2008.03.003
[12]. Rojo, E., Alonso, M. V., Oliet, M., Del Saz-Orozco, B., & Rodriguez, F. (2015). Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering, 68, 185-192. https://doi.org/10.1016/j.compositesb.2014.08.047
[13]. Rokbi, M., Osmani, H., Imad, A., & Benseddiq, N. (2011). Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Engineering,10(0), 2092-2097. https://doi.org/10.1016/j.pr oeng.2011.04.346
[14]. Ruksakulpiwat, Y., Sridee, J., Suppakarn, N., & Sutapun, W. (2009). Improvement of impact property of natural fiber–polypropylene composite by using natural rubber and EPDM rubber. Composites Part B: Engineering, 40(7), 619-622. https://doi.org/10.1016/j.cemconcomp.2009.02.006
[15]. Satyanarayana, K. G., Sukumaran, K., Kulkarni, A. G., Pillai, S. G. K., & Rohatgi, P. K. (1986). Fabrication and properties of natural fibre-reinforced polyester composites. Composites, 17(4), 329-333. https://doi.org/10.1016/0010- 4361(86)90750-0
[16]. Savastano Jr, H., Santos, S. F., Radonjic, M., & Soboyejo, W. O. (2009). Fracture and fatigue of natural fiber-reinforced cementitious composites. Cement and Concrete Composites, 31(4), 232-243. https://doi.org/ 10.1016/j.cemconcomp.2009.02.006
[17]. Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1632-1637. https://doi.org/10.101 6/j.compositesa.2008.07.007
[18]. Virk, A. S., Hall, W., & Summerscales, J. (2010). Failure strain as the key design criterion for fracture of natural fibre composites. Composites Science and Technology, 70(6), 995-999. https://doi.org/10.1016/j.compscitech.201002. 018
[19]. Wu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q. (2018). Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, 92-100. https://doi.org/10.1016/j.jclepro.2018.02.257
[20]. Xia, C., Zhang, S., Shi, S. Q., Cai, L., & Huang, J. (2016). Property enhancement of kenaf fiber reinforced composites by in situ aluminum hydroxide impregnation. Industrial Crops and Products, 79, 131-136.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.