References
[1]. Abdelgawad, A. (2014, April). Distributed data fusion algorithm for Wireless Sensor Network. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control (pp. 334-337). IEEE. https://doi.org/ 10.1109/ICNSC.2014.6819648
[2]. Alam, F., Mehmood, R., Katib, I., Albogami, N. N., & Albeshri, A. (2017). Data fusion and IoT for smart ubiquitous environments: A survey. IEEE Access, 5, 9533- 9554. https://doi.org/10.1109/ACCESS.2017.2697839
[3]. Bernal, E. A., Yang, X., Li, Q., Kumar, J., Madhvanath, S., Ramesh, P., & Bala, R. (2017). Deep temporal multimodal fusion for medical procedure monitoring using wearable sensors. IEEE Transactions on Multimedia, 20(1), 107-118. https://doi.org/10.1109/TMM.2017. 2726187
[4]. Cho, H., Seo, Y. W., Kumar, B. V., & Rajkumar, R. R. (2014, May). A multi-sensor fusion system for moving object detection and tracking in urban driving environments. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1836-1843). IEEE. https://doi.org/10.1109/ICRA.2014.6907100
[5]. Din, S., Ahmad, A., Paul, A., Rathore, M. M. U., & Jeon, G. (2017). A cluster-based data fusion technique to analyze big data in wireless multi-sensor system. IEEE Access, 5, 5069-5083. https://doi.org/10.1109/ACCESS. 2017.2679207
[6]. El-Faouzi, N. E., & Klein, L. A. (2016). Data fusion for ITS: Techniques and research needs. Transportation Research Procedia, 15, 495-512. https://doi.org/10. 1016/j.trpro.2016.06.042
[7]. Gartner. (2015). Smarter with Gartner. Retrieved from https://www.gartner.com/smarterwithgartner/top-tentechnology- trends-signal-the-digital-mesh
[8]. Goel, S., & Yuan, Y. (2015). Emerging research in connected vehicles. IEEE Intelligent Transportation Systems Magazine, 7(2), 6-9. https://doi.org/10.1109/ MITS.2015.2408136
[9]. Gordon, J., & Shortliffe, E. H. (1990, June). The Dempster-Shafer theory of evidence. In Readings in Uncertain Reasoning (pp. 529-539). Morgan Kaufmann Publishers Inc.
[10]. Liu, Z., Zhang, W., Quek, T. Q. S., & Lin, S. (2017). Data fusion of hetrogeneous sensor data. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5965-5969). IEEE. https://doi.org/10.1109/ ICASSP.2017.7953301
[11]. Rajeswari, K., Ishwarya, A., Vaishnavi, K. K., & Thiruvengadam, S. J. (2017, March). Performance analysis of data fusion methods for radar and IRST 3D target tracking. In 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 2570-2574). IEEE. https:// doi.org/10.1109/WiSPNET.2017.8300227
[12]. Robinson, R. M., Lee, H., McCourt, M. J., Marathe, A. R., Kwon, H., Ton, C., & Nothwang, W. D. (2015, September). Human-autonomy sensor fusion for rapid object detection. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 305-312). IEEE. https://doi.org/10.1109/IROS.2015. 7353390
[13]. Shafer, G. (1976). A Mathematical Theory of Evidence (Vol. 42). Princeton University Press.
[14]. Vielzeuf, V., Lechervy, A., Pateux, S., & Jurie, F. (2018). Multilevel sensor fusion with deep learning. IEEE Sensors Letters, 3(1), 1-4. https://doi.org/10.1109/LSENS.2018. 2878908
[15]. Xie, F., Yang, H., Peng, Y., & Gao, H. (2012, November). Data fusion detection model based on SVM and evidence theory. In 2012 IEEE 14th International Conference on Communication Technology (pp. 814- 818). IEEE. https://doi.org/10.1109/ICCT.2012.6511316
[16]. Xu, P., Davoine, F., Bordes, J. B., Zhao, H., & Denoeux, T. (2016). Multimodal information fusion for urban scene understanding. Machine Vision and Applications, 27(3), 331-349. https://doi.org/10.1007/s00138-014-0649-7
[17]. Zhang, L., Xie, Y., Xidao, L., Zhang, X.(2018). Multisource hetrogeneous data fusion, In 2018 International Conference on Artificial Intelligence and Big Data (ICABD) (pp.47-51) IEEE. https://doi.org/10.1109/ICAIBD. 2018.8396165