Distorted Image Registration for Image Fusion – A Literature Review

K. Elaiyaraja *, M. Senthil Kumar**, B. Chidambara Rajan***
* Department of Information Technology, SRM Valliammai Engineering College, Chennai, Tamil Nadu, India.
** Department of Computer Science Engineering, SRM Valliammai Engineering College, Chennai, Tamil Nadu, India.
*** Department of Electronics and Communication Engineering, SRM Valliammai Engineering College, Chennai, Tamil Nadu, India.
Periodicity:June - August'2019
DOI : https://doi.org/10.26634/jpr.6.2.16728

Abstract

Fusion image is obtained by processing information from various sources of images. Raw images are attained from different source or same source images. In the medical field, images are collected from several modalities like CT, MRI, etc., and merged into a single fused image. This fused image has significant features and information which can be used to diagnose easily. The fundamental or major task for medical image fusion is image registration. The image registration is done as a raw or distorted image. Distorted image registration methods are overviewed and empowering advancements in this field are done through this paper. The techniques and components for registering images are identified and given in an efficient way. The main impact of this paper is to present various techniques used for image registration in a systematic approach.

Keywords

Fusion Image, Medical Image Processing, Image Registration, Image Segmentation, Pixel Level Image Processing.

How to Cite this Article?

Elaiyaraja , K., Kumar, M. S., & Rajan, B. C. (2019). Distorted Image Registration for Image Fusion – A Literature Review. i-manager’s Journal on Pattern Recognition, 6(2), 32-40. https://doi.org/10.26634/jpr.6.2.16728

References

[1]. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54(3), 2033-2044. https://doi.org/10.1016/j. neuroimage.2010.09.025
[2]. Bajcsy, R., & Kovačič, S. (1989). Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing, 46(1), 1-21. https://doi.org/10.1016/S0734- 189X(89)80014-3
[3]. Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), 567-585. https://doi.org/10.1109/34. 24792
[4]. Broit, C. (1981). Optimal registration of deformed images. University of Pennsylvania Philadelphia.
[5]. Bro-Nielsen, M., & Gramkow, C. (1996, September). Fast fluid registration of medical images. In International Conference on Visualization in Biomedical Computing (pp. 265-276). Springer, Berlin, Heidelberg. https://doi.org/ 10.1007/BFb0046964
[6]. Brown, L. G. (1992). A survey of image registration techniques. ACM Computing Surveys (CSUR), 24(4), 325- 376. https://doi.org/10.1145/146370.146374
[7]. Cao, X., Yang, J., Gao, Y., Guo, Y., Wu, G., & Shen, D. (2017a). Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Medical Image Analysis, 41, 18-31. https://doi.org/10. 1016/j.media.2017.05.004
[8]. Cao, X., Yang, J., Zhang, J., Nie, D., Kim, M., Wang, Q., & Shen, D. (2017b, September). Deformable image registration based on similarity-steered CNN regression. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 300-308). Springer, Cham. https://doi.org/10.1007/978-3-319- 66182-7_35
[9]. Cifor, A., Risser, L., Chung, D., Anderson, E. M., & Schnabel, J. A. (2012, May). Hybrid feature-based logdemons registration for tumour tracking in 2-D liver ultrasound images. In 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) (pp. 724-727). IEEE. https://doi.org/10.1109/ISBI.2012.6235650
[10]. Guo, F., Zhao, X., Zou, B., & Liang, Y. (2017). Automatic retinal image registration using blood vessel segmentation and SIFT feature. International Journal of Pattern Recognition and Artificial Intelligence, 31(11), 1757006. https://doi.org/10.1142/S0218001417570063
[11]. Han, L., Hipwell, J. H., Tanner, C., Taylor, Z., Mertzanidou, T., Cardoso, J., ... & Hawkes, D. J. (2012). Development of patient-specific biomechanical models for predicting large breast deformation. Physics in Medicine and Biology, 57(2), 455-472. https://doi.org/10. 1088/0031-9155/57/2/455
[12]. Heinrich, M. P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F. V., Brady, M., & Schnabel, J. A. (2012). MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. Medical Image Analysis, 16(7), 1423-1435. https://doi.org/10.1016/j. media.2012.05.008
[13]. Heinrich, M. P., Jenkinson, M., Brady, J. M., & Schnabel, J. A. (2011, July). Non-rigid image registration through efficient discrete optimization. In MIUA (pp. 187- 192).
[14]. Kim, M., Han, D. K., & Ko, H. (2016). Joint patch clustering-based dictionary learning for multimodal image fusion. Information Fusion, 27, 198-214. https://doi.org/10.1016/j.inffus.2015.03.003
[15]. Kim, M., Wu, G., Yap, P. T., & Shen, D. (2012). A general fast registration framework by Learning Deformation–Appearance Correlation. IEEE Trans. Image Process, 21(4), 1823-1833. https://doi.org/10.1109/ TIP.2011.2170698
[16]. Li, H., Qiu, H., Yu, Z., & Li, B. (2017). Multifocus image fusion via fixed window technique of multiscale images and non-local means filtering. Signal Processing, 138, 71- 85. https://doi.org/10.1016/j.sigpro.2017.03.008
[17]. Li, H., Yu, Z., & Mao, C. (2016). Fractional differential and variational method for image fusion and superresolution. Neurocomputing, 171, 138-148. https://doi. org/10.1016/j.neucom.2015.06.035
[18]. Li, S., Kang, X., Fang, L., Hu, J., & Yin, H. (2017). Pixellevel image fusion: A survey of the state of the art. Information Fusion, 33, 100-112. https://doi.org/10.1016/ j.inffus.2016.05.004
[19]. Li, Y., & Verma, R. (2011). Multichannel image registration by feature-based information fusion. IEEE Transactions on Medical Imaging, 30(3), 707-720. https://doi.org/10.1109/tmi.2010.2093908
[20]. Liao, S., & Chung, A. C. (2011). Nonrigid brain MR image registration using uniform spherical region descriptor. IEEE Transactions on Image Processing, 21(1), 157-169. https://doi.org/10.1109/TIP.2011.2159615
[21]. Liu, C., Yuen, J., & Torralba, A. (2011). SIFT flow: Dense correspondence across scenes and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 978-994. https://doi.org/10. 1109/ tpami.2010.147
[22]. Mansi, T., Pennec, X., Sermesant, M., Delingette, H., & Ayache, N. (2011). iLogDemons: A demons-based registration algorithm for tracking incompressible elastic biological tissues. International Journal of Computer Vision, 92(1), 92-111. https://doi.org/10.1007/s11263- 010-0405-z
[23]. Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., & Ayache, N. (2005, October). Riemannian elasticity: A statistical regularization framework for non-linear registration. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 943-950). Springer, Berlin, Heidelberg. https://doi.org/10.1007/11566489_116
[24]. Rabbitt, R. D., Weiss, J. A., Christensen, G. E., & Miller, M. I. (1995, August). Mapping of hyperelastic deformable templates using the finite element method. In Vision Geometry IV (Vol. 2573, pp. 252-265). International Society for Optics and Photonics. https://doi.org/10.1 117/12.216419
[25]. Rivaz, H., Karimaghaloo, Z., Fonov, V. S., & Collins, D. L. (2014). Nonrigid registration of ultrasound and MRI using contextual conditioned mutual information. IEEE Transactions on Medical Imaging, 33(3), 708-725. https://doi.org/10.1109/tmi.2013.2294630
[26]. Roy, S., Wang, W. T., Carass, A., Prince, J. L., Butman, J. A., & Pham, D. L. (2014). PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging. Journal of Nuclear Medicine, 55(12), 2071-2077.
[27]. So, R. W., Tang, T. W., & Chung, A. C. (2011). Non-rigid image registration of brain magnetic resonance images using graph-cuts. Pattern Recognition, 44(10-11), 2450- 2467. https://doi.org/10.1016/j.patcog.2011.04.008
[28]. Toews, M., & Wells III, W. M. (2013). Efficient and robust model-to-image alignment using 3D scaleinvariant features. Medical Image Analysis, 17(3), 271- 282. https://doi.org/10.1016/j.media.2012.11.002
[29]. Tu, Z., & Bai, X. (2010). Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(10), 1744-1757. https://doi.org/ 10.1109/tpami.2009.186
[30]. Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: Efficient nonparametric image registration. NeuroImage, 45(1), S61- S72. https://doi.org/10.1016/j.neuroimage.2008.10.040
[31]. Wachinger, C., & Navab, N. (2012). Entropy and Laplacian images: Structural representations for multimodal registration. Medical Image Analysis, 16(1), 1-17. https://doi.org/10.1016/j.media.2011.03.001
[32]. Wang, K., Qi, G., Zhu, Z., & Chai, Y. (2017). A novel geometric dictionary construction approach for sparse representation based image fusion. Entropy, 19(7), 306. https://doi.org/10.3390/e19070306
[33]. Wei, L., Cao, X., Wang, Z., Gao, Y., Hu, S., Wang, L., ... & Shen, D. (2017). Learning based deformable registration for infant MRI by integrating random forest with auto context model. Medical Physics, 44(12), 6289-6303. https://doi.org/10.1002/mp.12578
[34]. Woo, J., Stone, M., & Prince, J. L. (2015). Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Transactions on Image Processing, 24(2), 757-759. https://doi.org/10. 1109/TIP.2014.2387019
[35]. Wu, G., Kim, M., Wang, Q., & Shen, D. (2013). SHAMMER: Hierarchical attribute guided, symmetric diffeomorphic registration for MR brain images. Human Brain Mapping, 35(3), 1044-1060. https://doi.org/10. 1002/hbm.22233
[36]. Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25(9), 1145-1157. https://doi.org/10.1109/TMI.2006.879320
[37]. Wu, G., Yap, P. T., Kim, M., & Shen, D. (2010). TPSHAMMER: Improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation. NeuroImage, 49(3), 2225-2233. https://doi.org/10.1016/j.neuroimage.2009. 10.065
[38]. Zhang, J., Gao, Y., Park, S. H., Zong, X., Lin, W., & Shen, D. (2017). Structured learning for 3-D perivascular space segmentation using vascular features. IEEE Transactions on Biomedical Engineering, 64(12), 2803- 2812. https://doi.org/10.1109/TBME.2016.2638918
[39]. Zhu, Z., Qi, G., Chai, Y., & Li, P. (2017). A geometric dictionary learning based approach for fluorescence spectroscopy image fusion. Applied Sciences, 7(2), 161. https://doi.org/10.3390/app7020161
[40]. Zhuang, X., Arridge, S., Hawkes, D. J., & Ourselin, S. (2011). A nonrigid registration framework using spatially encoded mutual information and free-form deformations. IEEE Transactions on Medical Imaging, 30(10), 1819-1828. https://doi.org/10.1109/TMI.2011.21 50240
[41]. Zitova, B., & Flusser, J. (2003). Image registration methods: A survey. Image and Vision Computing, 21(11), 977-1000. https://doi.org/10.1016/S0262-8856(03) 00137-9
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.