References
[1]. Abdullah, B. A., Younis, A. A., Pattany, P. M., & Saraf- Lavi, E. (2011). Textural based SVM for MS lesion segmentation in FLAIR MRIs. Open Journal of Medical Imaging, 1(2), 26-42. https://doi.org/10.4236/ojmi.2011. 12005
[2]. Ahmed, M. M., & Mohamad, D. B. (2008). Segmentation of brain MR images for tumor extraction by combining kmeans clustering and perona-malik anisotropic diffusion model. International Journal of Image Processing, 2(1), 27-34.
[3]. Ali, S. M., Abood, L. K., & Abdoon, R. S. (2013). Clustering and enhancement methods for extracting 3D brain tumor of MRI images. International Journal of Advanced Research in Computer Science and Software Engineering, 3(9), 34-45.
[4]. Alshayeji, M. H., Al-Rousan, M. A., Ellethy, H., & Abed, S. E. (2018). An efficient multiple sclerosis segmentation and detection system using neural networks. Computers & Electrical Engineering, 71, 191-205. https://doi.org/10. 1016/j.compeleceng.2018.07.020
[5]. Anbeek, P., Vincken, K. L., & Viergever, M. A. (2008). Automated MS-lesion segmentation by k-nearest neighbor classification. MIDAS Journal, 1-8.
[6]. Angelova, D., & Mihaylova, L. (2011). Contour segmentation in 2D ultrasound medical images with particle filtering. Machine Vision and Applications, 22(3), 551-561. https://doi.org/10.1007/s00138-010-0261-4
[7]. Cabezas, M., Oliver, A., Roura, E., Freixenet, J., Vilanova, J. C., Ramió-Torrentà, L., Rovire, A., & Lladó, X. (2014). Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding. Computer Methods and Programs in Biomedicine, 115 (3), 147-161.https://doi.org/10.1016/j.cmpb.2014.04.006
[8]. Dalton, C. M., Chard, D. T., Davies, G. R., Miszkiel, K. A., Altmann, D. R., Fernando, K., Plant, G. T., Thompson, A. J., & Miller, D. H. (2004). Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain, 127(5), 1101-1107. https://doi.org/10. 1093/brain/awh126
[9]. Freifeld, O., Greenspan, H., & Goldberger, J. (2007, April). Lesion detection in noisy MR brain images using th constrained GMM and active contours. In 2007 4 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 596-599). IEEE. https://doi.org/10. 1109/ISBI.2007.356922
[10]. Garcia-Lorenzo, D., Prima, S., Morrissey, S. P., & Barillot, C. (2008, September). A robust Expectation- Maximization algorithm for Multiple Sclerosis lesion segmentation. In MICCAI Workshop: 3D Segmentation in the Clinic: A Grand Challenge II, MS Lesion Segmentation (p. 277).
[11]. Ghribi, O., Njeh, I., Hamida, A. B., Zouch, W., & Mhiri, C. (2014, March). Brief review of multiple sclerosis lesions segmentation methods on conventional magnetic resonance imaging. In 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 249-253). IEEE. https://doi.org/10. 1109/ATSIP.2014.6834616
[12]. Ghribi, O., Sellami, L., Slima, M. B., Mhiri, C., Dammak, M., & Hamida, A. B. (2018). Multiple sclerosis exploration based on automatic MRI modalities segmentation approach with advanced volumetric evaluations for essential feature extraction. Biomedical Signal Processing and Control, 40, 473-487. https://doi.org/10.1016/j.bspc.2017.07.008
[13]. González-Villà, S., Oliver, A., Valverde, S., Wang, L., Zwiggelaar, R., & Lladó, X. (2016). A review on brain structures segmentation in magnetic resonance imaging. Artificial intelligence in Medicine, 73, 45-69. https://doi.org/10.1016/j.artmed.2016.09.001
[14]. Iglesias, J. E., & Sabuncu, M. R. (2015). Multi-atlas segmentation of biomedical images: A survey. Medical Image Analysis, 24(1), 205-219. https://doi.org/10.1016/j. media.2015.06.012
[15]. Karimian, A., & Jafari, S. (2015). A new method to segment the multiple sclerosis lesions on brain magnetic resonance images. Journal of Medical Signals and Sensors, 5(4), 238-244.
[16]. Loizou, C. P., Pantziaris, M., Pattichis, C. S. & Seimenis, I. (2013). Brain MR image normalization in texture analysis of Multiple Sclerosis. Journal of Biomedical Graphics and Computing, 3(1), 20-34. https://doi.org/10.5430/jbgc.v3n1p20
[17]. Loizou, C. P., Petroudi, S., Seimenis, I., Pantziaris, M., & Pattichis, C. S. (2015). Quantitative texture analysis of brain white matter lesions derived from T2-weighted MR images in MS patients with clinically isolated syndrome. Journal of Neuroradiology, 42(2), 99-114. https://doi.org/ 10.1016/j.neurad.2014.05.006
[18]. Oliveira, J., Castelo-Branco, M., Morais, R., Baptista, S., & Pereira, J. (2015, February). Analysis of multiple sclerosis DTI images that uses tract based spatial statistics. In 2015 IEEE 4th Portuguese Meeting on Bio Engineering (ENBENG) (pp. 1-3). IEEE. https://doi.org/10.1109/ENBENG. 2015.7088839
[19]. Ortiz, A., Palacio, A. A., Górriz, J. M., Ramírez, J., & Salas-González, D. (2013). Segmentation of brain MRI using SOM-FCM-based method and 3D statistical descriptors. Computational and Mathematical Methods in Medicine, 2013. http://doi.org/10.1155/2013/638563
[20]. Polesel, A., Ramponi, G., & Mathews, V. J. (2000). Image enhancement via adaptive unsharp masking. IEEE Transactions on Image Processing, 9(3), 505-510. https://doi.org/10.1109/83.826787
[21]. Tiley, J. S., Viswanathan, G. B., Shiveley, A., Tschopp, M., Srinivasan, R., Banerjee, R., & Fraser, H. L. (2010). Measurement of γ’ precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques. Micron, 41(6), 641-647. https://doi.org/10. 1016/j.micron.2010.03.003
[22]. Tomas-Fernandez, X., & Warfield, S. K. (2015). A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation. IEEE Transactions on Medical Imaging, 34(6), 1349-1361. https://doi.org/10.1109/TMI.2015.2393853
[23]. Zhu, H., & Basir, O. (2003, December). Automated brain tissue segmentation and MS lesion detection using th fuzzy and evidential reasoning. In 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 (Vol. 3, pp. 1070- 1073). IEEE. https://doi.org/10.1109/ICECS.2003.1301695