References
[1]. Anderson, R. M., & May, R. M. (1979). Population biology of infectious diseases: Part I. Nature, 280(5721), 361-367.
https://doi.org/10.1038/280361a0
[2]. Beretta, E., & Takeuchi, Y. (1995). Global stability of an SIR epidemic model with time delays. Journal of Mathematical
Biology, 33(3), 250-260.
[3]. Beretta, E., Hara, T., Ma, W., & Takeuchi, Y. (2001). Global asymptotic stability of an SIR epidemic model with distributed
time delay. Nonlinear Analysis, Theory, Methods & Applications, 47(6), 4107-4115.
[4]. Capasso, V., & Serio, G. (1978). A generalization of the Kermack-McKendrick deterministic epidemic model.
Mathematical Biosciences, 42(1-2), 43-61.
[5]. Chen, L., & Chen, J. (1993). Nonlinear Biological Dynamical System. Science, Beijing, China.
[6]. Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700-721.
https://doi.org/10.1098/rspa.1927.0118
[7]. Kumar, G. R., Narayan, K. L., & Reddy, B. R. (n. d.). Stability analysis of epidemic model with nonlinear incidence rates
and immigration. In Proceedings of National Conference on Pure and Applied Mathematics (pp. 978-93).
[8]. Li, G., & Wang, W. (2009). Bifurcation analysis of an epidemic model with nonlinear incidence. Applied Mathematics
and Computation, 214(2), 411-423. https://doi.org/10.1016/J.amc.2009.04.012
[9]. Liu, W. M., Hethcote, H. W., & Levin, S. A. (1987). Dynamical behavior of epidemiological models with nonlinear
incidence rates. Journal of Mathematical Biology, 25(4), 359-380.
[10]. Mena-Lorcat, J., & Hethcote, H. W. (1992). Dynamic models of infectious diseases as regulators of population sizes. Journal of Mathematical Biology, 30(7), 693-716.
[11]. Pang, G., & Chen, L. (2007). A delayed SIRS epidemic model with pulse vaccination. Chaos, Solitons & Fractals, 34(5),
1629-1635.
[12]. Ruan, S., & Wang, W. (2003). Dynamical behavior of an epidemic model with a nonlinear incidence rate. Journal of
Differential Equations, 188(1), 135-163. https://doi.org/10.1016/s0022-0396(02)00089-x
[13]. Wen, L., & Yang, X. (2008). Global stability of a delayed SIRS model with temporary immunity. Chaos, Solitons & Fractals,
38(1), 221-226.
[14]. Xu, R., & Ma, Z. (2009). Stability of a delayed SIRS epidemic model with a nonlinear incidence rate. Chaos, Solitons &
Fractals, 41(5), 2319-2325.