The Discrete Rising Sun Wrapped Cauchy Model

S. V. S. Girija*, P. Srinivasulu**, Y. Sreekanth***, A.V. Dattatreya Rao****
*,***Department of Mathematics, Hindu College, Guntur, Andhra Pradesh, India.
** Department of Statistics, Sri Chandra Reddy Degree College, Nellore, Andhra Pradesh, India.
**** Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.
Periodicity:April - June'2019
DOI : https://doi.org/10.26634/jmat.8.2.16634

Abstract

The circular models based on the Rising Sun function are motivated by purely mathematical considerations as a smoothing function and possible application. This work takes a further step in this direction using several mathematical tools such as Real Analysis along with MATLAB and is applied to enlarge the horizon of Mathematical Statistics. All the available circular / angular models are continuous distributions. Scant attention was made on construction and applications of discrete circular / angular models. Circular model using the Rising Sun function on continuous Wrapped Cauchy distribution is available in literature. Here an attempt is made to construct new discrete circular model by applying the methodology of discretization on the Rising Sun Wrapped Cauchy distribution and the population characteristics are evaluated using MATLAB.

Keywords

Circular model, trigonometric moments, Rising Sun Wrapped Cauchy distribution, discretization, characteristic function.

How to Cite this Article?

Girija, S. V. S., Srinivasulu, P., Sreekanth, Y., and Rao, A. V. D. (2019). The Discrete Rising Sun Wrapped Cauchy Model. i-manager's Journal on Mathematics, 8(2), 35-42. https://doi.org/10.26634/jmat.8.2.16634

References

[1]. Girija, S. V. S. (2010). Construction of New Circular Models. VDM Verlag, Germany.
[2]. Girija, S. V. S., Srihari, G. V. L. N., & Srinivas, R. (2019). On Discrete Wrapped Cauchy Model. IISTE-Journal of Mathematical Theory and Modeling, 9(4), 15-23. DOI: 10.7176/MTM.
[3]. Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in Circular Statistics (Vol. 5). World Scientific.
[4]. Levy, P. (1939). L'addition des variables aléatoires définies sur une circonférence. Bulletin de la Société mathématique de France, 67, 1-41.
[5]. Mardia, K. V. (1975). Statistics of directional data. Journal of the Royal Statistical Society: Series B (Methodological), 37(3), 349-371. https://doi.org/10.1111/j.2517-6161.1975.tb01550.x
[6]. Mardia, K. V., & Jupp, P. E. (2000). Directional Statistics. John Wiley and sons.
[7]. McCullagh, P. (1996). Möbius transformation and Cauchy parameter estimation. The Annals of Statistics, 24(2), 787-808.
[8]. Radhika, A. J. V., Girija, S. V. S., & Rao, A. D. (2013). On rising Sun von mises and rising Sun wrapped Cauchy circular models. Journal of Applied Mathematics, Statistics and Informatics, 9(2), 41-55.
[9]. Rao, D. A. V., Sarma, R. I., & Girija, S. V. S. (2007). On wrapped version of some life testing models. Communications in Statistics—Theory and Methods, 36(11), 2027-2035. https://doi.org/10.1080/03610920601143832
[10]. Sarma, R. I., Rao, D. A. V., & Girija, S. V. S. (2009). On characteristic functions of wrapped half logistic and binormal distributions. International Journal of Statistics and Systems, 4(1), 33-45.
[11]. Sarma, R. I., Rao, D. A. V., & Girija, S. V. S. (2011). On characteristic functions of the wrapped lognormal and the wrapped Weibull distributions. Journal of Statistical Computation and Simulation, 81(5), 579-589. https://doi.org/10.1080/ 00949650903436547
[12]. Srihari, G. V. L. N., Girija, S. V. S., & Rao, D. A. V. (2018). On Discrete Wrapped Exponential distribution-Characteristics. International Journal of Scientific Research In Mathematical and Statistical Sciences, 5(2), 57-64.
[13]. Srinivas, R., Srihari, G. V. L. N., & Girija, S. V. S. (2018). On construction of Discrete Wrapped Lindley Distribution. i-manager's Journal on Mathematics, 7(4), 10. DOI:10.26634/jmat.7.4.15874
[14]. Van Rooij, V. A. C., & Schikhof, W. H. (1982). A Second Course on Real Functions. Cambridge University Press, Cambridge.
[15]. Wang, & Shimizu, K. (2014). Discrete Cardioid Distribution. Conference on Advances and Applications in Distribution Theory. The Institute of Statistical Mathematics, Tokyo, Japan.
[16]. Wintner, A. (1947). On the shape of the angular case of Cauchy's distribution curves. The Annals of Mathematical Statistics, 18(4), 589-593.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.