A Review on Effect of Dressing and Grinding Fluid in Cylindrical Traverse Rough and Finish Cut Grinding Processes

Manikandan M.*, Prabagaran S.**, Sivaram N. M. ***, Milon Selvam Dennison ****
*-** Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.
*** Department of Mechanical Engineering, National Institute of Technology, Puducherry, Karaikal, Tamil Nadu, India.
**** Department of Mechanical Engineering, Kampala International University, Uganda.
Periodicity:February - April'2020
DOI : https://doi.org/10.26634/jme.10.2.16627

Abstract

The effect of dressing and grinding fluid in cylindrical traverse rough and finish cut grinding processes were analyzed by various researchers and the same is reviewed in this paper. The choice of wheel and machine cutting parameters, and the effect of dressing and grinding fluid were also predominant parameters in relation to the improved productivity, accuracy, and decreased cost of grinding process. The operation of removing dull grains and deposited metal particles on the outer surface of the grinding to achieve suitable wheel topography of the grinding wheel is called dressing. The application of grinding fluid in grinding process reduces heat in the grinding zone, provides lubrication between grinding wheel and the work material, and removes of metal particles and dressed abrasive grains resulting in improved accuracy and surface finish.

Keywords

Dressing, Grinding Fluid, Grinding process, Grinding Wheel, Cutting Parameters.

How to Cite this Article?

Manikandan, M., Prabagaran, S., Sivaram, N. M., and Dennison, M. S. (2020). A Review on Effect of Dressing and Grinding Fluid in Cylindrical Traverse Rough and Finish Cut Grinding Processes. i-manager’s Journal on Mechanical Engineering, 10(2), 35-46. https://doi.org/10.26634/jme.10.2.16627

References

[1]. Alexandre, F. A., Lopes, W. N., Dotto, F. R. L., Ferreira, F. I., Aguiar, P. R., Bianchi, E. C., & Lopes, J. C. (2018). Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model. The International Journal of Advanced Manufacturing Technology, 96(1-4), 67-79. https://doi.org/10.1007/s00170-018-1582-0
[2]. Axinte, D. A., Stepanian, J. P., Kong, M. C., & McGourlay, J. (2009). Abrasive waterjet turning—an efficient method to profile and dress grinding wheels. International Journal of Machine Tools and Manufacture, 49(3-4), 351-356. https://doi.org/10.1016/j.ijmachtools.20 08.11.006
[3]. Balakumar, S., Dennison, M. S., & Nelson, A. J. R. (2018). Reducing chips and scratches on closures of a car assembly line. i-manager's Journal on Mechanical Engineering, 8(4), 31-38. https://doi.org/10.26634/jme.8.4 .14336
[4]. Balakumar, S., Selvam, M. D., & Nelson, A. J. R. (2018). Wear and friction characteristics of aluminium matrix composites reinforced with flyash/Cu/Gr particles. International Journal of ChemTech Research, 11(1), 121- 133.
[5]. Barczak, L. M., Batako, A. D. L., & Morgan, M. N. (2010). A study of plane surface grinding under minimum quantity lubrication (MQL) conditions. International Journal of Machine Tools and Manufacture, 50(11), 977-985. https://doi.org/10.1016/j.ijmachtools.2010.07.005
[6]. Boothroyd, G. (1994). Product design for manufacture and assembly. Computer-Aided Design, 26(7), 505-520. https://doi.org/10.1016/0010-4485(94)90082-5
[7]. Brinksmeier, E., Heinzel, C., & Wittmann, M. (1999). Friction, cooling and lubrication in grinding. CIRP Annals, 48(2), 581-598. https://doi.org/10.1016/S0007- 8506(07)63236-3
[8]. Brinksmeier, E., Mutlugünes, Y., Klocke, F., Aurich, J. C., Shore, P., & Ohmori, H. (2010). Ultra-precision grinding. CIRP Annals, 59(2), 652-671. https://doi.org/10.1016/j.cirp.2010.05.001
[9]. Chakule, R. R., Choudhary, S. M., Karanjekar, S. M., & Talmale, P. S. (2015). Optimization of Cutting Parameters and Grinding Process for Surface Roughness using Taguchi Method and CFD Analysis. International Journal of Research in Advent Technology, 3(7), 23-30.
[10]. de Jesus Oliveira, D., Guermandi, L. G., Bianchi, E. C., Diniz, A. E., de Aguiar, P. R., & Canarim, R. C. (2012). Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. Journal of Materials Proces s ing Technology, 212(12) , 2559-2568. https://doi.org/10.1016/j.jmatprotec.2012.05.019
[11]. Dennison, M. S., & Meji, M. A. (2018). A Comparative Study on the Surface Finish Achieved During Face Milling of AISI 1045 Steel Components. i-manager's Journal on Mechanical Engineering, 8(2), 18-26. https://doi.org/10.26 634/jme.8.2.14209
[12]. Ghosh, S., Chattopadhyay, A. B., & Paul, S. (2008). Modelling of specific energy requirement during highefficiency deep grinding. International Journal of Machine Tools and Manufacture, 48(11), 1242-1253. https://doi.org/ 10.1016/j.ijmachtools.2008.03.008
[13]. Godino, L., Pombo, I., Sanchez, J. A., Mendez, I., & Cearsolo, X. (2017). Analysis of the dressing process using stationary dressing tools. Procedia Manufacturing, 13, 146-152. https://doi.org/10.1016/j.promfg.2017.09.023
[14]. Holesovsky, F., Pan, B., Morgan, M. N., & Czan, A. (2018). Evaluation of Diamond Dressing Effect on Workpiece Surface Roughness by Way of Analysis of Variance. Tehnièki Vjesnik, 25(Supplement 1), 165-169. https://doi.org/10.17559/TV-20160411122230
[15]. Irani, R. A., Bauer, R. J., & Warkentin, A. (2005). A review of cutting fluid application in the grinding process. International Journal of Machine Tools and Manufacture, 45(15), 1696-1705. https://doi.org/10.1016/j.ijmachtools. 2005.03.006
[16]. Jackson, M. J., Khangar, A., Chen, X., Robinson, G. M., Venkatesh, V. C., & Dahotre, N. B. (2007). Laser cleaning and dressing of vitrified grinding wheels. Journal of Materials Processing Technology, 185(1-3), 17-23. https://doi.org/10.1016/j.jmatprotec.2006.03.109
[17]. Jadhav, S., & Jachak., S. (2014). A Review of Optimization of Fluid Flow through Grinding Zone, International Journal of Engineering Research and Technology (IJERT), 3(3), 2398-2401.
[18]. Jain, V. K. (2008). Abrasive-based nano-finishing techniques: an overview. Machining Science and Technology, 12(3), 257-294. https://doi.org/10.1080/10910 340802278133
[19]. Jain, V. K. (2009). Magnetic field assisted abrasive based micro-/nano-finishing. Journal of Materials Processing Technology, 209(20), 6022-6038. https://doi.org /10.1016/j.jmatprotec.2009.08.015
[20]. Jiang, J. L., Ge, P. Q., Bi, W. B., Zhang, L., Wang, D. X., & Zhang, Y. (2013). 2D/3D ground surface topography modeling considering dressing and wear effects in grinding process. International Journal of Machine Tools and Manufacture, 74, 29-40. https://doi.org/10.1016/j.ijmach tools.2013.07.002
[21]. Kegg, R. L. (1983). Industrial problems in grinding. CIRP Annals, 32(2), 559-561. https://doi.org/10.1016/S0007- 8506(07)60183-8
[22]. Klocke, F., Soo, S. L., Karpuschewski, B., Webster, J. A., Novovic, D., Elfizy, A., ... & Tönissen, S. (2015). Abrasive machining of advanced aerospace alloys and composites. CIRP Annal s , 64(2) , 581-604. ht tps : / /doi.org/ 10.1016/j.cirp.2015.05.004
[23]. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., Yang, M., ... & Sun, K. (2017). Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 154, 1-11. https://doi.org/10.1016/j.jclepro.2017.03.213
[24]. Mohite, D. D., & Jadhav, S. M. (2015). An Investigation of Effect of Dressing Parameters for Minimum Surface Roughness using CNC Cylindrical Grinding Machine. IJREAS, 6(6), 59-68.
[25]. Ponnusamy, R., Dennison, M. S., & Ganesan, V. (2018). Effect of mineral based cutting fluid on surface roughness of en24 steel during turning operation. International Research Journal of Engineering and Technology (IRJET), 5(2), 1008-1011.
[26]. Rekha, R., Siddik, J. A. B., Kumar, A. A., Gurumoorthy, G., & Mattuvarkulali, M. (2017). Effect of machining parameters on material removal rate (MRR) and surface roughness in cylindrical grinding of Inconel 718. International Journal of Advanced Research Methodology in Engineering & Technology, 1(2), 152-160.
[27]. Rowe, W. B., Yan, L., Inasaki, I., & Malkin, S. (1994). Applications of artificial intelligence in grinding. CIRP Annals, 43(2), 521-531. https://doi.org/10.1016/S0007- 8506(07)60498-3
[28]. Sadeghi, M. H., Haddad, M. J., Tawakoli, T., & Emami, M. (2009). Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy. The International Journal of Advanced Manufacturing Technology, 44(5-6), 487-500. https://doi.org/10.1007/s00170-008-1857-y
[29]. Scieszka, S. F. (2005). Edge failure as a means of concurrently estimating the abrasion and edge fracture resistance of hard-metals. Tribology International, 38(9), 834-842. https://doi.org/10.1016/j.triboint.2005.02.011
[30]. Selvam, M. D., Dawood, D. A. S., & Karuppusami, D. G. (2012). Optimization of machining parameters for face milling operation in a vertical CNC milling machine using genetic algorithm. IRACST-Engineering Science and Technology: An International Journal (ESTIJ), 2(4), 544-548.
[31]. Selvam, M. D., & Senthil, P. (2016). Investigation on the effect of turning operation on surface roughness of hardened C45 carbon steel. Australian Journal of Mechanical Engineering, 14(2), 131-137. https://doi.org/ 10.1080/14484846.2015.1093257
[32]. Selvam, M. D., Srinivasan, V., & Sekar, C. B. (2014). An attempt to minimize lubricants in various metal cutting processes. International Journal of Applied Engineering Research, 9(22), 7688-7692.
[33]. Selvam, M. D., & Sivaram, N. M. (2017a). Optimal Parameter Design by Taguchi Method for Mechanical Properties of Al6061 Hybrid Composite Reinforced With Fly Ash/Graphite/Copper. International Journal of Chem. Tech. Research, 10(13), 128-137.
[34]. Selvam, M. D., & Sivaram, N. M. (2017b). The Effectiveness of Various Cutting Fluids on the Surface Roughness of AISI 1045 Steel During Turning Operation using Minimum Quantity Lubrication System. i-manager's Journal on Future Engineering and Technology, 13(1), 36-43. https://doi.org/10.26634/jfet.13.1.13761
[35]. Selvam, M. D., Senthil, P., & Sivaram, N. M. (2017). Parametric optimisation for surface roughness of AISI 4340 steel during turning under near dry machining condition. International Journal of Machining and Machinability of Materials, 19(6), 554-569.
[36]. Selvam, M. D., & Sivaram, N. M. (2018). A comparative study on the surface finish achieved during turning operation of AISI 4340 steel in flooded, near-dry and dry conditions. Australian Journal of Mechanical Engineering, 1-10. https://doi.org/10.1080/14484846.201 8.1546363
[37]. Shaji, S., & Radhakrishnan, V. (2003). Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology, 141(1), 51-59. https://doi.org/10.1016/S0924-0136(02)01112-3
[38]. Shrivastava, R. R. M. D. R. (2016). Optimization of Grinding Parameters of Surface Grinding Process for AISI 1018 Mild Steel by using Al2O3 Grinding Tool. IJSRD - International Journal for Scientific Research and Development, 4(8), 174-178.
[39]. Sinha, M. K., Setti, D., Ghosh, S., & Rao, P. V. (2014). An investigation into selection of optimum dressing parameters based on grinding wheel grit size. In Proceedings of the 5th International & 26th All India Manufacturing Technology, Design and Research Conference (pp.1-6).
[40]. Sultana, A., Kumar, A., & Harfield, D. (2010). Development of agri-pellet production cost and optimum size. Bioresource Technology, 101(14), 5609-5621. https://doi.org/10.1016/j.biortech.2010.02.011
[41]. Tawakoli, T., Hadad, M., Sadeghi, M. H., Daneshi, A., & Sadeghi, B. (2011). Minimum quantity lubrication in grinding: effects of abrasive and coolant–lubricant types. Journal of Cleaner Production, 19(17-18), 2088-2099. https://doi.org/10.1016/j.jclepro.2011.06.020
[42]. Thangamani, S. P., Ramasamy, K., & Dennison, M. S. (2018). The effect of cutting fluid on surface roughness of LM6 aluminium alloy during turning operation. International Research Journal of Engineering and Technology, 5(2), 1198-1200.
[43]. Tu, H. X., Pi, V. N., & Jun, G. (2019). A study on determination of optimum parameters for lubrication in external cylindrical grinding base on Taguchi method. In Key Engineering Materials. Trans Tech Publications, 796, 97- 102. https://doi.org/10.4028/www.scientific.net/KEM.79 6.97
[44]. Vignesh, G., Prakash, M., Dennison, M. S., and Ragupathi, P. (2018). Frictional Performance of Dimpled Textured Surfaces on a Frictional Pair: An Experimental Study. i-manager's Journal on Mechanical Engineering, 8(4), 18-24. https://doi.org/10.26634/jme.8.4.14337
[45]. Wang, Y., Li, C., Zhang, Y., Yang, M., Zhang, X., Zhang, N., & Dai, J. (2017). Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. Journal of Cleaner Production, 142, 3571- 3583. https://doi.org/10.1016/j.jcle pro.2016.10.110
[46]. Wegener, K., Hoffmeister, H. W., Karpuschewski, B., Kuster, F., Hahmann, W. C., & Rabiey, M. (2011). Conditioning and monitoring of grinding wheels. CIRP Annals, 60(2), 757-777. https://doi.org/10.1016/j.cirp.201 1.05.003
[47]. Yadav, H. S., & Shrivastava, R. K. (2014). Effect of process parameters on surface roughness and MRR in cylindrical grinding using response surface method. International Journal of Engineering Research and Technology (IJERT), 3(3).
[48]. Zhong, Z. W., & Venkatesh, V. C. (2009). Recent developments in grinding of advanced materials. The International Journal of Advanced Manufacturing Technology, 41(5-6), 468. https://doi.org/10.1007/s00170- 008-1496-3
[49]. Zhu, Z., Dhokia, V. G., Nassehi, A., & Newman, S. T. (2013). A review of hybrid manufacturing processes–state of the art and future perspectives. International Journal of Computer Integrated Manufacturing, 26(7), 596-615. https://doi.org/10.1080/0951192X.2012.749530
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.