References
[1]. Alexandre, F. A., Lopes, W. N., Dotto, F. R. L., Ferreira, F. I.,
Aguiar, P. R., Bianchi, E. C., & Lopes, J. C. (2018). Tool
condition monitoring of aluminum oxide grinding wheel
using AE and fuzzy model. The International Journal of
Advanced Manufacturing Technology, 96(1-4), 67-79.
https://doi.org/10.1007/s00170-018-1582-0
[2]. Axinte, D. A., Stepanian, J. P., Kong, M. C., &
McGourlay, J. (2009). Abrasive waterjet turning—an
efficient method to profile and dress grinding wheels.
International Journal of Machine Tools and Manufacture,
49(3-4), 351-356. https://doi.org/10.1016/j.ijmachtools.20
08.11.006
[3]. Balakumar, S., Dennison, M. S., & Nelson, A. J. R. (2018).
Reducing chips and scratches on closures of a car
assembly line. i-manager's Journal on Mechanical
Engineering, 8(4), 31-38. https://doi.org/10.26634/jme.8.4
.14336
[4]. Balakumar, S., Selvam, M. D., & Nelson, A. J. R. (2018).
Wear and friction characteristics of aluminium matrix
composites reinforced with flyash/Cu/Gr particles.
International Journal of ChemTech Research, 11(1), 121-
133.
[5]. Barczak, L. M., Batako, A. D. L., & Morgan, M. N. (2010).
A study of plane surface grinding under minimum quantity
lubrication (MQL) conditions. International Journal of
Machine Tools and Manufacture, 50(11), 977-985.
https://doi.org/10.1016/j.ijmachtools.2010.07.005
[6]. Boothroyd, G. (1994). Product design for manufacture
and assembly. Computer-Aided Design, 26(7), 505-520.
https://doi.org/10.1016/0010-4485(94)90082-5
[7]. Brinksmeier, E., Heinzel, C., & Wittmann, M. (1999).
Friction, cooling and lubrication in grinding. CIRP Annals,
48(2), 581-598. https://doi.org/10.1016/S0007-
8506(07)63236-3
[8]. Brinksmeier, E., Mutlugünes, Y., Klocke, F., Aurich, J. C.,
Shore, P., & Ohmori, H. (2010). Ultra-precision grinding. CIRP
Annals, 59(2), 652-671. https://doi.org/10.1016/j.cirp.2010.05.001
[9]. Chakule, R. R., Choudhary, S. M., Karanjekar, S. M., &
Talmale, P. S. (2015). Optimization of Cutting Parameters
and Grinding Process for Surface Roughness using Taguchi
Method and CFD Analysis. International Journal of
Research in Advent Technology, 3(7), 23-30.
[10]. de Jesus Oliveira, D., Guermandi, L. G., Bianchi, E. C.,
Diniz, A. E., de Aguiar, P. R., & Canarim, R. C. (2012).
Improving minimum quantity lubrication in CBN grinding
using compressed air wheel cleaning. Journal of Materials
Proces s ing Technology, 212(12) , 2559-2568.
https://doi.org/10.1016/j.jmatprotec.2012.05.019
[11]. Dennison, M. S., & Meji, M. A. (2018). A Comparative
Study on the Surface Finish Achieved During Face Milling of
AISI 1045 Steel Components. i-manager's Journal on
Mechanical Engineering, 8(2), 18-26. https://doi.org/10.26
634/jme.8.2.14209
[12]. Ghosh, S., Chattopadhyay, A. B., & Paul, S. (2008).
Modelling of specific energy requirement during highefficiency
deep grinding. International Journal of Machine
Tools and Manufacture, 48(11), 1242-1253. https://doi.org/
10.1016/j.ijmachtools.2008.03.008
[13]. Godino, L., Pombo, I., Sanchez, J. A., Mendez, I., &
Cearsolo, X. (2017). Analysis of the dressing process using
stationary dressing tools. Procedia Manufacturing, 13,
146-152. https://doi.org/10.1016/j.promfg.2017.09.023
[14]. Holesovsky, F., Pan, B., Morgan, M. N., & Czan, A.
(2018). Evaluation of Diamond Dressing Effect on
Workpiece Surface Roughness by Way of Analysis of
Variance. Tehnièki Vjesnik, 25(Supplement 1), 165-169.
https://doi.org/10.17559/TV-20160411122230
[15]. Irani, R. A., Bauer, R. J., & Warkentin, A. (2005). A
review of cutting fluid application in the grinding process.
International Journal of Machine Tools and Manufacture,
45(15), 1696-1705. https://doi.org/10.1016/j.ijmachtools.
2005.03.006
[16]. Jackson, M. J., Khangar, A., Chen, X., Robinson, G.
M., Venkatesh, V. C., & Dahotre, N. B. (2007). Laser
cleaning and dressing of vitrified grinding wheels. Journal
of Materials Processing Technology, 185(1-3), 17-23.
https://doi.org/10.1016/j.jmatprotec.2006.03.109
[17]. Jadhav, S., & Jachak., S. (2014). A Review of
Optimization of Fluid Flow through Grinding Zone,
International Journal of Engineering Research and
Technology (IJERT), 3(3), 2398-2401.
[18]. Jain, V. K. (2008). Abrasive-based nano-finishing
techniques: an overview. Machining Science and
Technology, 12(3), 257-294. https://doi.org/10.1080/10910
340802278133
[19]. Jain, V. K. (2009). Magnetic field assisted abrasive
based micro-/nano-finishing. Journal of Materials
Processing Technology, 209(20), 6022-6038. https://doi.org
/10.1016/j.jmatprotec.2009.08.015
[20]. Jiang, J. L., Ge, P. Q., Bi, W. B., Zhang, L., Wang, D. X.,
& Zhang, Y. (2013). 2D/3D ground surface topography
modeling considering dressing and wear effects in grinding
process. International Journal of Machine Tools and
Manufacture, 74, 29-40. https://doi.org/10.1016/j.ijmach
tools.2013.07.002
[21]. Kegg, R. L. (1983). Industrial problems in grinding. CIRP
Annals, 32(2), 559-561. https://doi.org/10.1016/S0007-
8506(07)60183-8
[22]. Klocke, F., Soo, S. L., Karpuschewski, B., Webster, J. A.,
Novovic, D., Elfizy, A., ... & Tönissen, S. (2015). Abrasive
machining of advanced aerospace alloys and composites.
CIRP Annal s , 64(2) , 581-604. ht tps : / /doi.org/
10.1016/j.cirp.2015.05.004
[23]. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., Yang, M., ... &
Sun, K. (2017). Heat transfer performance of MQL grinding
with different nanofluids for Ni-based alloys using vegetable
oil. Journal of Cleaner Production, 154, 1-11.
https://doi.org/10.1016/j.jclepro.2017.03.213
[24]. Mohite, D. D., & Jadhav, S. M. (2015). An Investigation
of Effect of Dressing Parameters for Minimum Surface
Roughness using CNC Cylindrical Grinding Machine.
IJREAS, 6(6), 59-68.
[25]. Ponnusamy, R., Dennison, M. S., & Ganesan, V.
(2018). Effect of mineral based cutting fluid on surface
roughness of en24 steel during turning operation.
International Research Journal of Engineering and
Technology (IRJET), 5(2), 1008-1011.
[26]. Rekha, R., Siddik, J. A. B., Kumar, A. A., Gurumoorthy,
G., & Mattuvarkulali, M. (2017). Effect of machining
parameters on material removal rate (MRR) and surface
roughness in cylindrical grinding of Inconel 718.
International Journal of Advanced Research Methodology
in Engineering & Technology, 1(2), 152-160.
[27]. Rowe, W. B., Yan, L., Inasaki, I., & Malkin, S. (1994).
Applications of artificial intelligence in grinding. CIRP
Annals, 43(2), 521-531. https://doi.org/10.1016/S0007-
8506(07)60498-3
[28]. Sadeghi, M. H., Haddad, M. J., Tawakoli, T., & Emami,
M. (2009). Minimal quantity lubrication-MQL in grinding of
Ti–6Al–4V titanium alloy. The International Journal of
Advanced Manufacturing Technology, 44(5-6), 487-500.
https://doi.org/10.1007/s00170-008-1857-y
[29]. Scieszka, S. F. (2005). Edge failure as a means of
concurrently estimating the abrasion and edge fracture
resistance of hard-metals. Tribology International, 38(9),
834-842. https://doi.org/10.1016/j.triboint.2005.02.011
[30]. Selvam, M. D., Dawood, D. A. S., & Karuppusami, D.
G. (2012). Optimization of machining parameters for face
milling operation in a vertical CNC milling machine using
genetic algorithm. IRACST-Engineering Science and
Technology: An International Journal (ESTIJ), 2(4), 544-548.
[31]. Selvam, M. D., & Senthil, P. (2016). Investigation on the
effect of turning operation on surface roughness of
hardened C45 carbon steel. Australian Journal of
Mechanical Engineering, 14(2), 131-137. https://doi.org/
10.1080/14484846.2015.1093257
[32]. Selvam, M. D., Srinivasan, V., & Sekar, C. B. (2014). An
attempt to minimize lubricants in various metal cutting
processes. International Journal of Applied Engineering
Research, 9(22), 7688-7692.
[33]. Selvam, M. D., & Sivaram, N. M. (2017a). Optimal
Parameter Design by Taguchi Method for Mechanical
Properties of Al6061 Hybrid Composite Reinforced With Fly
Ash/Graphite/Copper. International Journal of Chem.
Tech. Research, 10(13), 128-137.
[34]. Selvam, M. D., & Sivaram, N. M. (2017b). The
Effectiveness of Various Cutting Fluids on the Surface
Roughness of AISI 1045 Steel During Turning Operation using Minimum Quantity Lubrication System. i-manager's Journal
on Future Engineering and Technology, 13(1), 36-43.
https://doi.org/10.26634/jfet.13.1.13761
[35]. Selvam, M. D., Senthil, P., & Sivaram, N. M. (2017).
Parametric optimisation for surface roughness of AISI 4340
steel during turning under near dry machining condition.
International Journal of Machining and Machinability of
Materials, 19(6), 554-569.
[36]. Selvam, M. D., & Sivaram, N. M. (2018). A
comparative study on the surface finish achieved during
turning operation of AISI 4340 steel in flooded, near-dry and
dry conditions. Australian Journal of Mechanical
Engineering, 1-10. https://doi.org/10.1080/14484846.201
8.1546363
[37]. Shaji, S., & Radhakrishnan, V. (2003). Analysis of
process parameters in surface grinding with graphite as
lubricant based on the Taguchi method. Journal of
Materials Processing Technology, 141(1), 51-59.
https://doi.org/10.1016/S0924-0136(02)01112-3
[38]. Shrivastava, R. R. M. D. R. (2016). Optimization of
Grinding Parameters of Surface Grinding Process for AISI
1018 Mild Steel by using Al2O3 Grinding Tool. IJSRD -
International Journal for Scientific Research and
Development, 4(8), 174-178.
[39]. Sinha, M. K., Setti, D., Ghosh, S., & Rao, P. V. (2014). An
investigation into selection of optimum dressing
parameters based on grinding wheel grit size. In
Proceedings of the 5th International & 26th All India
Manufacturing Technology, Design and Research
Conference (pp.1-6).
[40]. Sultana, A., Kumar, A., & Harfield, D. (2010).
Development of agri-pellet production cost and optimum
size. Bioresource Technology, 101(14), 5609-5621.
https://doi.org/10.1016/j.biortech.2010.02.011
[41]. Tawakoli, T., Hadad, M., Sadeghi, M. H., Daneshi, A.,
& Sadeghi, B. (2011). Minimum quantity lubrication in
grinding: effects of abrasive and coolant–lubricant types.
Journal of Cleaner Production, 19(17-18), 2088-2099.
https://doi.org/10.1016/j.jclepro.2011.06.020
[42]. Thangamani, S. P., Ramasamy, K., & Dennison, M. S.
(2018). The effect of cutting fluid on surface roughness of LM6 aluminium alloy during turning operation. International
Research Journal of Engineering and Technology, 5(2),
1198-1200.
[43]. Tu, H. X., Pi, V. N., & Jun, G. (2019). A study on
determination of optimum parameters for lubrication in
external cylindrical grinding base on Taguchi method. In
Key Engineering Materials. Trans Tech Publications, 796, 97-
102. https://doi.org/10.4028/www.scientific.net/KEM.79
6.97
[44]. Vignesh, G., Prakash, M., Dennison, M. S., and
Ragupathi, P. (2018). Frictional Performance of Dimpled
Textured Surfaces on a Frictional Pair: An Experimental
Study. i-manager's Journal on Mechanical Engineering,
8(4), 18-24. https://doi.org/10.26634/jme.8.4.14337
[45]. Wang, Y., Li, C., Zhang, Y., Yang, M., Zhang, X., Zhang,
N., & Dai, J. (2017). Experimental evaluation on tribological
performance of the wheel/workpiece interface in minimum
quantity lubrication grinding with different concentrations of
Al2O3 nanofluids. Journal of Cleaner Production, 142, 3571-
3583. https://doi.org/10.1016/j.jcle pro.2016.10.110
[46]. Wegener, K., Hoffmeister, H. W., Karpuschewski, B.,
Kuster, F., Hahmann, W. C., & Rabiey, M. (2011).
Conditioning and monitoring of grinding wheels. CIRP
Annals, 60(2), 757-777. https://doi.org/10.1016/j.cirp.201
1.05.003
[47]. Yadav, H. S., & Shrivastava, R. K. (2014). Effect of
process parameters on surface roughness and MRR in
cylindrical grinding using response surface method.
International Journal of Engineering Research and
Technology (IJERT), 3(3).
[48]. Zhong, Z. W., & Venkatesh, V. C. (2009). Recent
developments in grinding of advanced materials. The
International Journal of Advanced Manufacturing
Technology, 41(5-6), 468. https://doi.org/10.1007/s00170-
008-1496-3
[49]. Zhu, Z., Dhokia, V. G., Nassehi, A., & Newman, S. T.
(2013). A review of hybrid manufacturing processes–state
of the art and future perspectives. International Journal of
Computer Integrated Manufacturing, 26(7), 596-615.
https://doi.org/10.1080/0951192X.2012.749530