A Study on Optimization of Machining Parameters in Cylindrical Traverse Rough and Finish Cut Grinding Processes

Manikandan M.*, S. Prabagaran**, N. M. Sivaram***, Milon Selvam Dennison****
*-** Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.
*** Department of Mechanical Engineering, National Institute of Technology, Puducherry, Karaikal, Tamil Nadu, India.
**** Department of Mechanical Engineering, Kampala International University, Uganda.
Periodicity:November - January'2020
DOI : https://doi.org/10.26634/jme.10.1.16626

Abstract

Grinding is one of the most important and widely used manufacturing processes. In grinding operation, the selection of optimum process parameters is vital. Achieving optimum Material Removal Rate and surface finish at minimum possible machining cost and time is a challenging task. Various researchers are working in this field to get optimum yields and optimum planning of experiments. The optimum conditions could be yielded using traditional and nontraditional optimization techniques, such as Taguchi, Response Surface Methodology, Genetic Algorithm, etc. In this article, an attempt is made in reviewing the effect of various process parameters on various grinding operation on different steel alloy materials. This review relies on notable academic publications and conference proceedings.

Keywords

Grinding, Material Removal Rate, Surface Finish, Optimization Technique, Taguchi.

How to Cite this Article?

Manikandan, M., Prabagaran, S., Sivaram, N. M., and Dennison, M. S. (2020). A Study on Optimization of Machining Parameters in Cylindrical Traverse Rough and Finish Cut Grinding Processes. i-manager's Journal on Mechanical Engineering, 10(1), 51-65. https://doi.org/10.26634/jme.10.1.16626

References

[1]. Almeida, I. A., De Rossi, W., Lima, M. S. F., Berretta, J. R., Nogueira, G. E. C., Wetter, N. U., & Vieira Jr, N. D. (2006). Optimization of titanium cutting by factorial analysis of the pulsed Nd: YAG laser parameters. Journal of Materials Processing Technology, 179(1-3), 105-110. https://doi.org /10.1016/j.jmatprotec.2006.03.107
[2]. Altintas, Y., & Weck, M. (2004). Chatter stability of metal cutting and grinding. CIRP Annals, 53(2), 619-642. https://doi.org/10.1016/S0007-8506(07)60032-8
[3]. Bennett, R. S., & May, C. F. (1966). Performance studies on a typical centreless grinding machine with reference to truing and balancing of the grinding wheel. International Journal of Machine Tool Design and Research, 6(2), 47- 101. https://doi.org/10.1016/0020-7357(66)90007-2
[4]. Boothroyd, G. (1994). Product design for manufacture and assembly. Computer-Aided Design, 26(7), 505-520. https://doi.org/10.1016/0010-4485(94)90082-5
[5]. Debnath, S., Reddy, M. M., & Yi, Q. S. (2014). Environmental friendly cutting fluids and cooling techniques in machining: A review. Journal of Cleaner Production, 83, 33-47. https://doi.org/10.1016/j.jclepro.20 14.07.071
[6]. Dhar, N. R., Kamruzzaman, M., & Ahmed, M. (2006). Effect of Minimum Quantity Lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, 172(2), 299-304. https://doi.org/10.1016/j.jmatprotec.2005.09.022
[7]. El-Hofy, H. A. G. (2013). Fundamentals of Machining Processes: Conventional and Nonconventional Processes. CRC Press.
[8]. Ernst, D., & Kim, L. (2002). Global production networks, knowledge diffusion, and local capability formation. Research Policy, 31(8-9), 1417-1429.
[9]. Ezugwu, E. O. (2005). Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12-13), 1353-1367. https://doi.org/10.1016/S0048- 7333(02)00072-0
[10]. Gijo, E. V., Scaria, J., & Antony, J. (2011). Application of six sigma methodology to reduce defects of a grinding process. Quality and Reliability Engineering International, 27(8), 1221-1234. https://doi.org/10.1002/qre.1212
[11]. Groover, M. P. (2007). Fundamentals of Modern Manufacturing: Materials Processes, and Systems. John Wiley & Sons.
[12]. Habib, S. S. (2014). Parameter optimization of electrical discharge machining process by using Taguchi approach. Journal of Engineering and Technology Research, 6(3), 27-42. https://doi.org/10.5897//JETR 2014.0356
[13]. Hameed, S., Abbas, M. A., & Ghalib, I. (2012, January). Effective use of technology can improve the quality and productivity of machining operation of Fuze shop. In Proceedings of the 6th WSEAS International Conference on Computer Engineering and Applications, and Proceedings of the 2012 American conference on Applied Mathematics (pp. 436-445). World Scientific and Engineering Academy and Society (WSEAS).
[14]. He, Y., Li, Y., Wu, T., & Sutherland, J. W. (2015). An energy-responsive optimization method for machine tool selection and operation sequence in flexible machining job shops. Journal of Cleaner Production, 87, 245-254. https://doi.org/10.1016/j.jclepro.2014.10.006
[15]. Iuliano, L., Moretto, I., & Brandino, D. (2019). Definition of Cylindrical Grinding Process Standard for Aeronautical gears. Retrieved from https://webthesis.biblio.polito .it/10488/1/tesi.pdf
[16]. Jadoun, R. S., Kumar, P., Mishra, B. K., & Mehta, R. C. S. (2006). Optimization of process parameters for ultrasonic drilling of advanced engineering ceramics using the Taguchi approach. Engineering Optimization, 38(7), 771- 787. https://doi.org/10.1080/03052150600733962
[17]. Jadoun, R. S., Kumar, P., & Mishra, B. K. (2009). Taguchi's optimization of process parameters for production accuracy in ultrasonic drilling of engineering ceramics. Production Engineering, 3(3), 243-253. https://doi.org/10.1007/s11740-009-0164-2
[18]. Jagtap, K. R., Ubale, S. B., & Kadam, M. S. (2011). Optimization of cylindrical grinding process parameters for AISI 5120 steel using Taguchi method. International Journal of Design and Manufacturing Technology, 2(1), 47-56.
[19]. Jahan, M. P., Rahman, M. & Wong, Y. S. (2011). A review on the conventional and micro-electrodischarge machining of tungsten carbide. International Journal of Machine Tools and Manufacture, 51(12), 837-858. https://doi.org/10.1016/j.ijmachtools.2011.08.016
[20]. Jawahir, I. S., Brinksmeier, E., M'saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., Umbrello, D., & Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2), 603-626. https://doi.org/10.1016/j.cirp.2011.05.002
[21]. Jayal, A. D., Badurdeen, F., Dillon Jr, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152. https://doi.org/10.1016/j .cirpj. 2010.03.006
[22]. Jeevanantham, S., Sivaram, N. M., Smart, D. R., & Nallusamy, S. (2017). Optimization of internal grinding process parameters on C40E steel using taguchi technique. International Journal of Applied Engineering Research, 12(19), 8660-8664.
[23]. Karande, M. R. J., Patil, M. K. R., Jadhav, S. M., & Nanwatkar, R. K. (2017). Optimization of cylindrical grinding machine parameters for minimum surface roughness and maximum MRR. GRD Journals-Global Research and Development Journal for Engineering, 2(5), 62-68.
[24]. Karpuschewski, B., Knoche, H. J., & Hipke, M. (2008). Gear finishing by abrasive processes. CIRP Annals, 57(2), 621-640. https://doi.org/10.1016/j.cirp.2008.09.002
[25]. Kumar, K., Chattopadhyaya, S., & Singh, H. (2012). Optimal material removal and effect of process parameters of cylindrical grinding machine by Taguchi method. International Journal of Advanced Engineering Research and Studies, 2(1), 39-43.
[26]. Kumar, N., Tripathi, H., & Gandotra, S. (2015). Optimization of cylindrical grinding process parameters on C40E steel using taguchi technique. International Journal of Engineering Research Applications, 5, 100-104.
[27]. Kumar, S., & Bhatia, O. S. (2015). Review of analysis & optimization of cylindrical grinding process parameters on material removal rate of En15AM steel. IOSR Journal of Mechanical and Civil Engineering, 12(4), 35-43. https:// doi.org/10.9790 /1684-12423543
[28]. Kumar, S., Gupta, M., & Satsangi, P. S. (2015). Multipleresponse optimization of cutting forces in turning of UDGFRP composite using distance-based pareto genetic algorithm approach. Engineering Science and Technology, an International Journal, 18(4), 680-695. https://doi.org/10.1016/j.jestch.2015.04.010
[29]. Lieder, M., & Rashid, A. (2016). Towards circular economy implementation: A comprehensive review in context of manufacturing industry. Journal of Cleaner Production,115,36-5. https://doi.org/10.1016/j.jclepro.201 5.12.042
[30]. Lin, H. C., Su, C. T., Wang, C. C., Chang, B. H., & Juang, R. C. (2012). Parameter optimization of continuous sputtering process based on Taguchi methods, neural networks, desirability function, and genetic algorithms. Expert Systems with Applications, 39(17), 12918-12925. https://doi.org/10.1016/j.eswa.2012.05.032
[31]. McCoy, J. S. (2017). Introduction tracing the historical development of metalworking fluids. In Byers J. P. (3rd Ed.). Metalworking Fluids (pp. 1-17). CRC Press. https://doI.org/1 0.4324/9781351228213
[32]. Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000). Reconfigurable manufacturing systems: Key to future manufacturing. Journal of Intelligent Manufacturing, 11(4), 403-419. https://doi.org/10.1023/A:1008930403506
[33]. Mekala, K., Chandradas, J., Chandrasekaran, K., Kannan, T. T. M., Ramesh, E., & Babu, R. N. (2014). Optimization of cylindrical grinding parameters of austenitic stainless steel rods (AISI 316) by Taguchi method. International Journal of Mechanical Engineering and Robotics Research, 3(2), 208-215.
[34]. Mohite, D. D., Patil, K. R., Karande, R. J., & Jadhav, V. S. (2017). Modeling and optimization of cylindrical grinding parameters for MRR and surface roughness. International Journal of Engineering Sciences & Research Technology, 6(4), 32-40.
[35]. Montgomery, D. C. (1999). Experimental design for product and process design and development. Journal of the Royal Statistical Society: Series D (The Statistician), 48(2), 159-177. https://doi.org/10.1111/1467-9884.00179
[36]. Neşeli, S., Asiltürk, İ., & Çelik, L. (2012). Determining the optimum process parameter for grinding operations using robust process. Journal of Mechanical Science and technology, J26(11), 3587-3595. https://doi.org/10.1 007/12206- 012-0851-3
[37]. Pal, D., Bangar, A., Sharma, R., & Yadav, A. (2012). Optimization of grinding parameters for minimum surface roughness by Taguchi parametric optimization technique. International Journal of Mechanical and Industrial Engineering, 1(3), 74-78.
[38]. Panthangi, R. K., & Naduvinamani, V. (2017). Optimization of surface roughness in cylindrical grinding Process. International Journal of Applied Engineering Research, 12, 7350-7354.
[39]. Ponnusamy, R., Selvam, D, M., & Ganesan, V. (2018). Effect of mineral based cutting fluid on surface roughness of EN24 steel during turning operation. International Research Journal of Engineering and Technology (IRJET), 5(2), 1008-1011.
[40]. Rajurkar, K. P., Zhu, D., McGeough, J. A., Kozak, J., & De Silva, A. (1999). New developments in electrochemical machining. CIRP Annals, 48(2), 567-579. https://doi.org/10.1016/S0007-8506(07)63235-1
[41]. Rudrapati, R., Bandyopadhyay, A., & Pal, P. K. (2013). Multi-objective optimization in traverse cut cylindrical grinding. International Journal of Advanced MaterialsManufacturing & Characterization, 3, 335-339. https://doI .org/10.11127/ijammc.2013.02.061
[42]. Schreiber, A. T., Schreiber, G., Akkermans, H., Anjewierden, A., Shadbolt, N., de Hoog, R., Van de Velde, W., Shadbolt, N. R. & Wielinga, B. (2000). Knowledge Engineering and Management: The Common Kads Methodology. MIT Press.
[43]. Scott, D., Boyina, S., & Rajurkar, K. P. (1991). Analysis and optimization of parameter combinations in wire electrical discharge machining. The International Journal of Production Research, 29(11), 2189-2207. https://doi. org/10.1080/00207549108948078
[44]. Selvam, M. D., & Meji, M. A. (2018). A Comparative Study on the Surface Finish Achieved During Face Milling of AISI 1045 Steel Components. i-manager's Journal on Mechanical Engineering, 8(2), 18-26. https://doi.org/ 10.26634/jme.8.2.14209
[45]. Selvam, M. D., & Senthil, P. (2016). Investigation on the effect of turning operation on surface roughness of hardened C45 carbon steel. Australian Journal of Mechanical Engineering, 14(2),131-137. https://doi. org/10.1080/14484846.2015.1093257
[46]. Selvam, M. D., & Sivaram, N. (2017). The effectiveness of various cutting fluids on the surface roughness of AISI 1045 steel during turning operation using minimum quantity lubrication system. Journal on Future Engineering & Technology,13(1),36-43.https://doi.org/10.26634 /jfet.13.1.13761
[47]. Selvam, M. D., & Sivaram, N. M. (2018). A comparative study on the surface finish achieved during turning operation of AISI 4340 steel in flooded, near-dry and dry conditions. Australian Journal of Mechanical Engineering, 1-10. https://doi.org/10.1080/14484846. 2018.1546363
[48]. Selvam, M. D., Dawood, D. A. S., & Karuppusami, D. G. (2012). Optimization of machining parameters for face milling operation in a vertical CNC milling machine using genetic algorithm. IRACST - Engineering Science and Technology: An International Journal (ESTIJ), 2(4), 544- 548.https://doi.org/10.13140/RG.2.2.21632.33286
[49]. Selvam, M. D., Senthil, P., & Sivaram, N. M. (2017). Parametric optimisation for surface roughness of AISI 4340 steel during turning under near dry machining condition. International Journal of Machining and Machinability of Materials,19(6), 554-569. https://doi.org/10.1504/IJMMM. 2017.088896
[50]. Selvam, M. D., Srinivasan, V., & Sekar, C. B. (2014). An attempt to minimize lubricants in various metal cutting processes. International Journal of Applied Engineering Research, 9(22), 7688-7692.
[51]. Shaji, S., & Radhakrishnan, V. (2003). Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology, 141(1), 51-59. https:// doi.org/10.1016/S0924-0136(02)01112-3
[52]. Siddik, A. J., Kumar, A. A, Gurumoorthy, G., Mattuvarkulali, M., & Rekha, R. (2017). Effect of machining parameters on Material Removal Rate (MRR) and surface roughness in cylindrical grinding of Inconel 718. International Journal of Advanced Research Methodology in Engineering and Technology, 1(2), 152.
[53]. Sridhar, M. M. J., & Khan, M. A. G. (2014). Optimization of cylindrical grinding process parameters of OHNS steel (AISI 0-1) rounds using design of experiments concept. International Journal of Engineering Trends and Technology (IJETT), 17(3), 109-114.
[54]. Thakor, S. P., & Patel, D. M. (2014). An experimental investigation on cylindrical grinding process parameters for EN 8 using regression analysis. International Journal of Engineering Development and Research, 2(2), 2486- 2491.
[55].Todd, R. H., Allen, D. K., & Alting, L. (1994). Manufacturing Processes Reference Guide. Industrial Press Inc.
[56]. Tönshoff, H. K., Karpuschewski, B., Mandrysch, T., & Inasaki, I. (1998). Grinding process achievements and their consequences on machine tools challenges and opportunities. CIRP Annals, 47(2), 651-668. https://doi.org/ 10.1016/S0007-8506(07)63247-8
[57]. Tsui, K. L. (1992). An overview of Taguchi method and newly developed statistical methods for robust design. LIE Transactions, 24(5), 44-57. https://doi.org/10.1080 /07408179208964244
[58]. Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462-471. https://doi.org/ 10.1016/j.jclepro .2013.02.030
[59]. Youssef, H. A., & El-Hofy, H. (2008). Machining Technology: Machine Tools and Operations. CRC Press.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.