References
[1]. Almeida, I. A., De Rossi, W., Lima, M. S. F., Berretta, J. R.,
Nogueira, G. E. C., Wetter, N. U., & Vieira Jr, N. D. (2006).
Optimization of titanium cutting by factorial analysis of the
pulsed Nd: YAG laser parameters. Journal of Materials
Processing Technology, 179(1-3), 105-110. https://doi.org
/10.1016/j.jmatprotec.2006.03.107
[2]. Altintas, Y., & Weck, M. (2004). Chatter stability of metal
cutting and grinding. CIRP Annals, 53(2), 619-642.
https://doi.org/10.1016/S0007-8506(07)60032-8
[3]. Bennett, R. S., & May, C. F. (1966). Performance studies
on a typical centreless grinding machine with reference to
truing and balancing of the grinding wheel. International
Journal of Machine Tool Design and Research, 6(2), 47-
101. https://doi.org/10.1016/0020-7357(66)90007-2
[4]. Boothroyd, G. (1994). Product design for manufacture
and assembly. Computer-Aided Design, 26(7), 505-520.
https://doi.org/10.1016/0010-4485(94)90082-5
[5]. Debnath, S., Reddy, M. M., & Yi, Q. S. (2014).
Environmental friendly cutting fluids and cooling
techniques in machining: A review. Journal of Cleaner
Production, 83, 33-47. https://doi.org/10.1016/j.jclepro.20
14.07.071
[6]. Dhar, N. R., Kamruzzaman, M., & Ahmed, M. (2006).
Effect of Minimum Quantity Lubrication (MQL) on tool wear
and surface roughness in turning AISI-4340 steel. Journal of
Materials Processing Technology, 172(2), 299-304.
https://doi.org/10.1016/j.jmatprotec.2005.09.022
[7]. El-Hofy, H. A. G. (2013). Fundamentals of Machining Processes: Conventional and Nonconventional Processes.
CRC Press.
[8]. Ernst, D., & Kim, L. (2002). Global production networks,
knowledge diffusion, and local capability formation.
Research Policy, 31(8-9), 1417-1429.
[9]. Ezugwu, E. O. (2005). Key improvements in the
machining of difficult-to-cut aerospace superalloys.
International Journal of Machine Tools and Manufacture,
45(12-13), 1353-1367. https://doi.org/10.1016/S0048-
7333(02)00072-0
[10]. Gijo, E. V., Scaria, J., & Antony, J. (2011). Application
of six sigma methodology to reduce defects of a grinding
process. Quality and Reliability Engineering International,
27(8), 1221-1234. https://doi.org/10.1002/qre.1212
[11]. Groover, M. P. (2007). Fundamentals of Modern
Manufacturing: Materials Processes, and Systems. John
Wiley & Sons.
[12]. Habib, S. S. (2014). Parameter optimization of
electrical discharge machining process by using Taguchi
approach. Journal of Engineering and Technology
Research, 6(3), 27-42. https://doi.org/10.5897//JETR
2014.0356
[13]. Hameed, S., Abbas, M. A., & Ghalib, I. (2012,
January). Effective use of technology can improve the
quality and productivity of machining operation of Fuze
shop. In Proceedings of the 6th WSEAS International
Conference on Computer Engineering and Applications,
and Proceedings of the 2012 American conference on
Applied Mathematics (pp. 436-445). World Scientific and
Engineering Academy and Society (WSEAS).
[14]. He, Y., Li, Y., Wu, T., & Sutherland, J. W. (2015). An
energy-responsive optimization method for machine tool
selection and operation sequence in flexible machining
job shops. Journal of Cleaner Production, 87, 245-254.
https://doi.org/10.1016/j.jclepro.2014.10.006
[15]. Iuliano, L., Moretto, I., & Brandino, D. (2019). Definition
of Cylindrical Grinding Process Standard for Aeronautical
gears. Retrieved from https://webthesis.biblio.polito
.it/10488/1/tesi.pdf
[16]. Jadoun, R. S., Kumar, P., Mishra, B. K., & Mehta, R. C. S. (2006). Optimization of process parameters for ultrasonic
drilling of advanced engineering ceramics using the
Taguchi approach. Engineering Optimization, 38(7), 771-
787. https://doi.org/10.1080/03052150600733962
[17]. Jadoun, R. S., Kumar, P., & Mishra, B. K. (2009).
Taguchi's optimization of process parameters for
production accuracy in ultrasonic drilling of engineering
ceramics. Production Engineering, 3(3), 243-253.
https://doi.org/10.1007/s11740-009-0164-2
[18]. Jagtap, K. R., Ubale, S. B., & Kadam, M. S. (2011).
Optimization of cylindrical grinding process parameters for
AISI 5120 steel using Taguchi method. International Journal
of Design and Manufacturing Technology, 2(1), 47-56.
[19]. Jahan, M. P., Rahman, M. & Wong, Y. S. (2011). A
review on the conventional and micro-electrodischarge
machining of tungsten carbide. International Journal of
Machine Tools and Manufacture, 51(12), 837-858.
https://doi.org/10.1016/j.ijmachtools.2011.08.016
[20]. Jawahir, I. S., Brinksmeier, E., M'saoubi, R., Aspinwall,
D. K., Outeiro, J. C., Meyer, D., Umbrello, D., & Jayal, A. D.
(2011). Surface integrity in material removal processes:
Recent advances. CIRP Annals, 60(2), 603-626.
https://doi.org/10.1016/j.cirp.2011.05.002
[21]. Jayal, A. D., Badurdeen, F., Dillon Jr, O. W., & Jawahir,
I. S. (2010). Sustainable manufacturing: Modeling and
optimization challenges at the product, process and
system levels. CIRP Journal of Manufacturing Science and
Technology, 2(3), 144-152. https://doi.org/10.1016/j .cirpj.
2010.03.006
[22]. Jeevanantham, S., Sivaram, N. M., Smart, D. R., &
Nallusamy, S. (2017). Optimization of internal grinding
process parameters on C40E steel using taguchi
technique. International Journal of Applied Engineering
Research, 12(19), 8660-8664.
[23]. Karande, M. R. J., Patil, M. K. R., Jadhav, S. M., &
Nanwatkar, R. K. (2017). Optimization of cylindrical grinding
machine parameters for minimum surface roughness and
maximum MRR. GRD Journals-Global Research and
Development Journal for Engineering, 2(5), 62-68.
[24]. Karpuschewski, B., Knoche, H. J., & Hipke, M. (2008).
Gear finishing by abrasive processes. CIRP Annals, 57(2), 621-640. https://doi.org/10.1016/j.cirp.2008.09.002
[25]. Kumar, K., Chattopadhyaya, S., & Singh, H. (2012).
Optimal material removal and effect of process
parameters of cylindrical grinding machine by Taguchi
method. International Journal of Advanced Engineering
Research and Studies, 2(1), 39-43.
[26]. Kumar, N., Tripathi, H., & Gandotra, S. (2015).
Optimization of cylindrical grinding process parameters on
C40E steel using taguchi technique. International Journal
of Engineering Research Applications, 5, 100-104.
[27]. Kumar, S., & Bhatia, O. S. (2015). Review of analysis &
optimization of cylindrical grinding process parameters on
material removal rate of En15AM steel. IOSR Journal of
Mechanical and Civil Engineering, 12(4), 35-43. https://
doi.org/10.9790 /1684-12423543
[28]. Kumar, S., Gupta, M., & Satsangi, P. S. (2015). Multipleresponse
optimization of cutting forces in turning of UDGFRP
composite using distance-based pareto genetic
algorithm approach. Engineering Science and
Technology, an International Journal, 18(4), 680-695.
https://doi.org/10.1016/j.jestch.2015.04.010
[29]. Lieder, M., & Rashid, A. (2016). Towards circular
economy implementation: A comprehensive review in
context of manufacturing industry. Journal of Cleaner
Production,115,36-5. https://doi.org/10.1016/j.jclepro.201
5.12.042
[30]. Lin, H. C., Su, C. T., Wang, C. C., Chang, B. H., &
Juang, R. C. (2012). Parameter optimization of continuous
sputtering process based on Taguchi methods, neural
networks, desirability function, and genetic algorithms.
Expert Systems with Applications, 39(17), 12918-12925.
https://doi.org/10.1016/j.eswa.2012.05.032
[31]. McCoy, J. S. (2017). Introduction tracing the historical
development of metalworking fluids. In Byers J. P. (3rd Ed.).
Metalworking Fluids (pp. 1-17). CRC Press. https://doI.org/1
0.4324/9781351228213
[32]. Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000).
Reconfigurable manufacturing systems: Key to future
manufacturing. Journal of Intelligent Manufacturing, 11(4),
403-419. https://doi.org/10.1023/A:1008930403506
[33]. Mekala, K., Chandradas, J., Chandrasekaran, K.,
Kannan, T. T. M., Ramesh, E., & Babu, R. N. (2014).
Optimization of cylindrical grinding parameters of
austenitic stainless steel rods (AISI 316) by Taguchi method.
International Journal of Mechanical Engineering and
Robotics Research, 3(2), 208-215.
[34]. Mohite, D. D., Patil, K. R., Karande, R. J., & Jadhav, V.
S. (2017). Modeling and optimization of cylindrical grinding
parameters for MRR and surface roughness. International
Journal of Engineering Sciences & Research Technology,
6(4), 32-40.
[35]. Montgomery, D. C. (1999). Experimental design for
product and process design and development. Journal of
the Royal Statistical Society: Series D (The Statistician), 48(2),
159-177. https://doi.org/10.1111/1467-9884.00179
[36]. Neşeli, S., Asiltürk, İ., & Çelik, L. (2012). Determining
the optimum process parameter for grinding operations
using robust process. Journal of Mechanical Science and
technology, J26(11), 3587-3595. https://doi.org/10.1
007/12206- 012-0851-3
[37]. Pal, D., Bangar, A., Sharma, R., & Yadav, A. (2012).
Optimization of grinding parameters for minimum surface
roughness by Taguchi parametric optimization technique.
International Journal of Mechanical and Industrial
Engineering, 1(3), 74-78.
[38]. Panthangi, R. K., & Naduvinamani, V. (2017).
Optimization of surface roughness in cylindrical grinding
Process. International Journal of Applied Engineering
Research, 12, 7350-7354.
[39]. Ponnusamy, R., Selvam, D, M., & Ganesan, V. (2018).
Effect of mineral based cutting fluid on surface roughness
of EN24 steel during turning operation. International
Research Journal of Engineering and Technology (IRJET),
5(2), 1008-1011.
[40]. Rajurkar, K. P., Zhu, D., McGeough, J. A., Kozak, J., &
De Silva, A. (1999). New developments in electrochemical
machining. CIRP Annals, 48(2), 567-579.
https://doi.org/10.1016/S0007-8506(07)63235-1
[41]. Rudrapati, R., Bandyopadhyay, A., & Pal, P. K. (2013).
Multi-objective optimization in traverse cut cylindrical
grinding. International Journal of Advanced MaterialsManufacturing & Characterization, 3, 335-339. https://doI
.org/10.11127/ijammc.2013.02.061
[42]. Schreiber, A. T., Schreiber, G., Akkermans, H.,
Anjewierden, A., Shadbolt, N., de Hoog, R., Van de Velde,
W., Shadbolt, N. R. & Wielinga, B. (2000). Knowledge
Engineering and Management: The Common Kads
Methodology. MIT Press.
[43]. Scott, D., Boyina, S., & Rajurkar, K. P. (1991). Analysis
and optimization of parameter combinations in wire
electrical discharge machining. The International Journal
of Production Research, 29(11), 2189-2207. https://doi.
org/10.1080/00207549108948078
[44]. Selvam, M. D., & Meji, M. A. (2018). A Comparative
Study on the Surface Finish Achieved During Face Milling of
AISI 1045 Steel Components. i-manager's Journal on
Mechanical Engineering, 8(2), 18-26. https://doi.org/
10.26634/jme.8.2.14209
[45]. Selvam, M. D., & Senthil, P. (2016). Investigation on the
effect of turning operation on surface roughness of
hardened C45 carbon steel. Australian Journal of
Mechanical Engineering, 14(2),131-137. https://doi.
org/10.1080/14484846.2015.1093257
[46]. Selvam, M. D., & Sivaram, N. (2017). The effectiveness
of various cutting fluids on the surface roughness of AISI
1045 steel during turning operation using minimum
quantity lubrication system. Journal on Future Engineering
& Technology,13(1),36-43.https://doi.org/10.26634
/jfet.13.1.13761
[47]. Selvam, M. D., & Sivaram, N. M. (2018). A
comparative study on the surface finish achieved during
turning operation of AISI 4340 steel in flooded, near-dry and
dry conditions. Australian Journal of Mechanical
Engineering, 1-10. https://doi.org/10.1080/14484846.
2018.1546363
[48]. Selvam, M. D., Dawood, D. A. S., & Karuppusami, D.
G. (2012). Optimization of machining parameters for face
milling operation in a vertical CNC milling machine using
genetic algorithm. IRACST - Engineering Science and
Technology: An International Journal (ESTIJ), 2(4), 544-
548.https://doi.org/10.13140/RG.2.2.21632.33286
[49]. Selvam, M. D., Senthil, P., & Sivaram, N. M. (2017). Parametric optimisation for surface roughness of AISI 4340
steel during turning under near dry machining condition.
International Journal of Machining and Machinability of
Materials,19(6), 554-569. https://doi.org/10.1504/IJMMM.
2017.088896
[50]. Selvam, M. D., Srinivasan, V., & Sekar, C. B. (2014). An
attempt to minimize lubricants in various metal cutting
processes. International Journal of Applied Engineering
Research, 9(22), 7688-7692.
[51]. Shaji, S., & Radhakrishnan, V. (2003). Analysis of
process parameters in surface grinding with graphite as
lubricant based on the Taguchi method. Journal of
Materials Processing Technology, 141(1), 51-59. https://
doi.org/10.1016/S0924-0136(02)01112-3
[52]. Siddik, A. J., Kumar, A. A, Gurumoorthy, G.,
Mattuvarkulali, M., & Rekha, R. (2017). Effect of machining
parameters on Material Removal Rate (MRR) and surface
roughness in cylindrical grinding of Inconel 718.
International Journal of Advanced Research Methodology
in Engineering and Technology, 1(2), 152.
[53]. Sridhar, M. M. J., & Khan, M. A. G. (2014). Optimization
of cylindrical grinding process parameters of OHNS steel
(AISI 0-1) rounds using design of experiments concept.
International Journal of Engineering Trends and
Technology (IJETT), 17(3), 109-114.
[54]. Thakor, S. P., & Patel, D. M. (2014). An experimental
investigation on cylindrical grinding process parameters for
EN 8 using regression analysis. International Journal of
Engineering Development and Research, 2(2), 2486-
2491.
[55].Todd, R. H., Allen, D. K., & Alting, L. (1994).
Manufacturing Processes Reference Guide. Industrial Press
Inc.
[56]. Tönshoff, H. K., Karpuschewski, B., Mandrysch, T., &
Inasaki, I. (1998). Grinding process achievements and their
consequences on machine tools challenges and
opportunities. CIRP Annals, 47(2), 651-668. https://doi.org/
10.1016/S0007-8506(07)63247-8
[57]. Tsui, K. L. (1992). An overview of Taguchi method and
newly developed statistical methods for robust design. LIE
Transactions, 24(5), 44-57. https://doi.org/10.1080
/07408179208964244
[58]. Yan, J., & Li, L. (2013). Multi-objective optimization of
milling parameters–the trade-offs between energy,
production rate and cutting quality. Journal of Cleaner
Production, 52, 462-471. https://doi.org/ 10.1016/j.jclepro
.2013.02.030
[59]. Youssef, H. A., & El-Hofy, H. (2008). Machining
Technology: Machine Tools and Operations. CRC Press.