New Representation of Biharmonic Curves in Special 3-Dimensional Kenmotsu Manifold

Talat Körpinar*, Essin TURHAN**
*-** Firat University, Department of Mathematics, Elazi.
Periodicity:January - March'2012
DOI : https://doi.org/10.26634/jmat.1.1.1662

Abstract

In this article, the authors study matrix representation of biharmonic curves in 3-dimensional Kenmotsu manifold. We characterize Frenet frame of the biharmonic curves in terms of their curvature and torsion in special 3-dimensional Kenmotsu manifold.

Keywords

Kenmotsu Manifold, Biharmonic Curve, Matrix Representation.

How to Cite this Article?

Körpinar, T., and Turhan, E. (2012). New Representation Of Biharmonic Curves In Special 3-Dimensional Kenmotsu Manifold. i-manager’s Journal on Mathematics, 1(1), 1-7. https://doi.org/10.26634/jmat.1.1.1662

References

[1]. K. Arslan, R. Ezentas, C. Murathan, T. Sasahara, Biharmonic submanifolds 3-dimensional (k,m)-manifolds, Internat. J. Math. Math. Sci. 22 (2005), 3575-3586.
[2]. D.E. Blair: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, 1976.
[3]. R. Caddeo, S. Montaldo and C. Oniciuc: Biharmonic submanifolds of Sn , Israel J. Math., to appear.
[4]. R. Caddeo, S. Montaldo and P. Piu: Biharmonic curves on a surface, Rend. Mat., to appear.
[5]. B. Y. Chen: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169--188.
[6]. S. Degla, L. Todjihounde: Biharmonic Reeb curves in Sasakian manifolds, arXiv:1008.1903.
[7]. J. Eells and L. Lemaire: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
[8]. J. Eells and J.H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[9]. T. Hasanis and T. Vlachos: Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145- 169.
[10]. G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130--144.
[11]. G. Y. Jiang: 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7(4) (1986), 389- -402.
[12]. K. Kenmotsu: A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103.
[13]. T. Körpinar and E. Turhan: Biharmonic curves in the special three-dimensional Kentmotsu manifold K with h-parallel Ricci tensor, Revista Notas de Matemática, 7(1) (2011), 14-24.
[14]. B. O'Neill: Semi-Riemannian Geometry, Academic Press, New York (1983).
[15]. P. Strzelecki: On biharmonic maps and their generalizations, Calc. Var. 18 (2003), 401-432.
[16]. E. Turhan and T. Körpinar: Characterize on the Heisenberg Group with left invariant Lorentzian metric, Demonstratio Mathematica 42 (2) 2009, 423-428.
[17]. C. Wang: Biharmonic maps from R4 into a Riemannian manifold, Math. Z. 247 (2004), 65-87.
[18]. C. Wang: Remarks on biharmonic maps into spheres, Calc. Var. 21 (2004), 221-242.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.