References
[1]. Cuntoor, N., Kale, A., & Chellappa, R. (2003, April). Combining multiple evidences for gait recognition. In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings (ICASSP'03). (Vol. 3, pp. 3-33). IEEE. https://doi.org/10.1 109/ICASSP.2003.1199100
[2]. Dupuis, Y., Savatier, X., & Vasseur, P. (2013). Feature subset selection applied to model-free gait recognition. Image and Vision Computing, 31(8), 580-591. https://doi.org/10.1016/j.imavis.2013.04.001
[3]. Han, H., & Jain, A. K. (2014). Age, gender and race estimation from unconstrained face images. Department of Computer Science Engineering, Michigan State Univ., East Lansing, MI, USA, MSU Tech. Rep (MSU-CSE- 14-5), 87.
[4]. Han, H., Otto, C., & Jain, A. K. (2013, June). Age estimation from face images: Human vs. machine performance. In 2013 International Conference on Biometrics (ICB) (pp. 1-8). IEEE. https://doi.org/10.11 09/ICB.2013.6613022
[5]. Han, J., & Bhanu, B. (2005). Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 316-322. https://doi.org/10.1109/TPAMI.2006.38
[6]. Hayashi, J. I., Yasumoto, M., Ito, H., & Koshimizu, H. (2002, August). Age and gender estimation based on wrinkle texture and color of facial images. In Object Recognition Supported by User Interaction for Service Robots (Vol. 1, pp. 405-408). IEEE. https://doi.org/10.1109/ ICPR.2002.1044736
[7]. Hema, M., Babulu, K., & Balaji, N. (2019). Gait recognition and classification using random forest algorithm. Journal of Advance Research in Dynamical & Control system, 11(2), 281-289.
[8]. Huang, G., & Wang, Y. (2007, November). Gender classification based on fusion of multi-view gait sequences. In Asian Conference on Computer Vision (pp. 462-471). Springer: Berlin, Heidelberg.
[9]. Huang, P. S. (2001). Automatic gait recognition via statistical approaches for extended template features. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(5), 818-824 https://doi.org/10. 1109/3477.956044
[10]. Iwama, H., Okumura, M., Makihara, Y., & Yagi, Y. (2012). The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Transactions on Information Forensics and Security, 7(5), 1511-1521. https://doi.org/10.1109/ TIFS.2012.2204253
[11]. Jean, F., Bergevin, R., & Albu, A. B. (2005, May). Body tracking in human walk from monocular video sequences. In the 2nd Canadian Conference on Computer and Robot Vision (CRV'05) (pp. 144-151). IEEE. https://doi.org/10.1109/CRV.2005.24
[12]. Khryashchev, V., Priorov, A., & Ganin, A. (2014, October). Gender and age recognition for video analytics solution. In 2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1-6). IEEE. https://doi.org/10.1109/AIPR.2014.7041914
[13]. Liu, Y., Collins, R., & Tsin, Y. (2002, May). Gait sequence analysis using frieze patterns. In European Conference on Computer Vision (pp. 657-671). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540- 47967-8_44
[14]. Lu, J., & Tan, Y. P. (2010). Gait-based human age estimation. IEEE Transactions on Information Forensics and Security, 5(4), 761-770. https://doi.org/10.1109/ TIFS.2010.2069560
[15]. Makihara, Y., Okumura, M., Iwama, H., & Yagi, Y. (2011, October). Gait-based age estimation using a whole-generation gait database. In 2011 International Joint Conference on Biometrics (IJCB) (pp. 1-6). IEEE. https://doi.org/10.1109/IJCB.2011.6117531
[16]. Tafazzoli, F., & Safabakhsh, R. (2010). Model-based human gait recognition using leg and arm movements. Engineering Applications of Artificial Intelligence, 23(8), 1237-1246. https://doi.org/10.1016/j.engappai.2010. 07.004
[17]. Wang, L., Ning, H., Tan, T., & Hu, W. (2004). Fusion of static and dynamic body biometrics for gait recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(2), 149-158. https://doi.org/10.1109/ TCSVT.2003.821972
[18]. Zhang, R., Vogler, C., & Metaxas, D. (2004, June). Human gait recognition. In 2004 Conference on Computer Vision and Pattern Recognition Workshop (pp.18-18). IEEE. https://doi.org/10.1109/CVPR.2004.361
[19]. Zhuang, X., Zhou, X., Hasegawa-Johnson, M., & Huang, T. (2008, December). Face age estimation using patch-based hidden markov model supervectors. In 2008 19th International Conference on Pattern Recognition (pp. 1-4). IEEE. https://doi.org/10.1109/ICPR. 2008.4761364