References
[1]. Ahmed, M.R., & Shareefuddin, M. (2019). EPR, optical, physical and structural studies of strontium alumino- borate glasses containing Cu2+ ions. SN Applied Sciences, 1(2019), 209. https://doi.org/10.1007/s42452-019-0201-5
[2]. Bandyopadhyay, A. K. (1981). Optical and ESR investigation of borate glasses containing single and mixed transition metal oxides. Journal of Materials Science, 16(1), 189-203. https://doi.org/10.1007/ BF00552072
[3]. Bleaney, B., Bowers, K. D., & Trenam, R. S. (1955). Paramagnetic resonance in diluted copper salts II. Salts with trigonal symmetry. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 228(1173), 157-166. https://doi.org/10.1098/ rspa.1955.0040
[4]. Chary, M. N. (1995). Electron paramagnetic resonance studies of Cu2+ in alkali‐haloborate glasses. Physica Status Solid i (A), 148 (1), K37-K39. https://doi.org/10.1002/pssa.2211480139
[5]. Davis, E. A., & Mott, N. (1970). Conduction in noncrystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22(179), 0903-0922. https://doi.org/10.1080/14786437008221061
[6]. Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. Journal of Applied Physics, 79(3), 1736-1740. https://doi.org/10.1063/1.360962
[7]. Durga, D. K., & Veeraiah, N. (2002). Physical properties of ZnF –As2O3 –TeO2 glasses doped with Cr ions. Physica B: Condensed Matter, 324(1-4), 127- 141. https://doi.org/10.1016/S0921-4526(02)01286-3
[8]. Gowda, V. V., Reddy, C. N., Radha, K. C., Anavekar, R. V., Etourneau, J., & Rao, K. J. (2007). Structural investigations of sodium diborate glasses containing PbO, Bi2O3 and TeO2 : Elastic property measurements and spectroscopic studies. Journal of Non-Crystalline Solids, 353(11-12), 1150-1163. https://doi.org/10.1016/j. jnoncrysol.2006.12.117
[9]. Kivelson, D., & Neiman, R. (1961). ESR studies on the bonding in copper complexes. The Journal of Chemical Physics, 35(1), 149-155. https://doi.org/10.1063/ 1.1731880
[10]. Krogh-Moe, J. (1962). Structural interpretation of melting point depression in the sodium borate system. Physics and Chemistry of Glasses, 3(4), 101-110.
[11]. Kumar, R. V., Pavani, P. G., Ramesh, B., Shareefuddin, M., & Kumar, K. S. (2013). Structural studies of xLi2O–(40 − 2 x)Bi2O3 –20CdO–40B2O3 glasses. Optical Materials, 35(12), 2267-2274. https://doi.org/10.1016/j.optmat. 2013.06.013
[12]. Kumar, V. R., Veeraiah, N., & Rao, B. A. (1997). Optical absorption and photoluminescence properties of Pr3+ -doped ZnF2 -PbO-TeO2 glasses. Journal of Luminescence, 75(1), 57-62. https://doi.org/10.1016/ S0022-2313(97)89361-1
[13]. Mansour, E. (2012). FTIR spectra of pseudo-binary sodium borate glasses containing TeO2. Journal of Molecular Structure, 1014, 1-6. https://doi.org/10.1016/ j.molstruc.2012.01.034
[14]. Phani, A. L., Sekhar, K. C., Chakradhar, R. P. S., Chary, M. N., & Shareefuddin, M. (2018). EPR and FTIR spectroscopic studies of MO-Al 2O3 -Bi2O3 -B2O3 -MnO (M= Pb, Zn and Cd) glasses. Materials Research Express, 5(3), 035204. https://doi.org/10.1088/2053-1591/aab64d
[15]. Phani, A.V.P., Hameed, A., Shareefuddin, Md., Chary, M.N., & Ramadevudu, G. (2019). EPR and Spectral Studies of Cu2+ ion in (30-x)CdO- xAl2O3 -35Bi2O3 -34B2O3 - 1CuO Glasses, i-manager's Journal on Material Science, 6(4), 67-74. https://doi.org/10.26634/jms.6.4.1 5706
[16]. Rajyasree, C., Teja, P. M. V., Murthy, K. V. R., & Rao, D. K. (2011). Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO. Physica B: Condensed Matter, 406(23), 4366-4372. https://doi.org/10.1016/j.physb.2011.08.082
[17]. Sands, R. H. (1955). Paramagnetic resonance absorption in glass. Physical Review, 99(4), 1222-1226. https://doi.org/10.1103/PhysRev.99.1222
[18]. Sekhar, K. C., Hameed, A., Chary, M. N., & Shareefuddin, M. (2016, September). Physical, Optical and Electron paramagnetic resonance studies of PbBr PbO-B2O3 glasses containing Cu2+ ions. In IOP Conference Series: Materials Science and Engineering (Vol. 149, No. 1, p. 012167). IOP Publishing. https://doi.org/10.1088/ 1757-899X/149/1/012167
[19]. Sekhar, K. C., Hameed, A., Sathe, V. G., Chary, M. N., & Shareefuddin, M. D. (2018). Physical, optical and structural studies of copper-doped lead oxychloro borate glasses. Bulletin of Materials Science, 41(3), 1-7. https://doi.org/10.1007/s12034-018-1604-4
[20]. Sekhar, K.C, Narsimlu, N., Samdani., Ramadevudu, G., Chary, N.M., & Shareefuddin, Md. (2019). Effect of lead bromide on vanadium ions in lead borate glasses for applications in modern optical devices. i-manager's Journal on Material Science, 7(1), 37-43. https://doi. org/10.26634/jms.7.1.15718
[21]. Shareefuddin, M., Jamal, M., & Chary, M. N. (1996). Electron spin resonance and optical absorption spectra of Cu2+ ions in xNaI-(30 -x) Na2O-70B2O3 glasses. Journal of Non-crystalline Solids, 201 (1-2), 95-101. https://doi.org/10.1016/0022-3093(95)00627-3
[22]. Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (B), 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224
[23]. Thulasiramudu, A., & Buddhudu, S. (2006). Optical characterization of Mn2+, Ni2+ and Co2+ ions doped zinc lead borate glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 102(2), 212-227. https://doi.org/10.1016/j.jqsrt.2006.02.006
[24]. Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92 (5), 1324. https://doi.org/10.1103/PhysRev.92.1324