References
[1]. Babu, V., Soni, J. S., & Rao, M. L. (2016). Analysis and
evaluation of heat affected zones (HAZ) of the workpiece
surface machined using different electrode by Die-sinking
EDM of EN-31 die steel. The International Journal of
Engineering and Science (IJES), 5(3), 37-42.
[2]. Han, F., & Kunieda, M. (2004). Development of parallel
spark electrical discharge machining. Precision
Engineering, 28(1), 65-72. https://doi.org/10.1016/S0141-
6359(03)00076-X
[3]. Jeykrishnan, J., Ramnath, B. V., Elanchezhian, C., &
Akilesh, S. (2017). Parametric analysis on Electro-chemical
machining of SKD-12 tool steel. Materials Today:
Proceedings, 4(2), 3760-3766. https://doi.org/10.1016/j.
matpr.2017.02.272
[4]. Kansal, H. K., Singh, S., & Kumar, P. (2006). An
experimental study of the machining parameters in
powder mixed electric discharge machining of Al–10%
SiCP metal matrix composites. International Journal of
Machining and Machinability of Materials, 1(4), 396-411.
https://doi.org/10.1504/IJMMM.2006.012349
[5]. Kiran, K., Reddy, G., Prasad, A., & Rajendra, R. (2014).
Study of surface integrity characteristics on Al and die steel
components using copper tool in sink EDM process.
International Journal of Current Engineering and
Technology, Special Issue-2, 236-241.
[6]. Kumar, S., & Choudhury, S. K. (2007). Prediction of wear
and surface roughness in electro-discharge diamond
grinding. Journal of Materials Processing Technology,
191(1-3), 206-209. https://doi.org/10.1016/j.jmatprotec.
2007.03.032
[7]. Lee, H. T., & Tai, T. Y. (2003). Relationship between EDM
parameters and surface crack formation. Journal of
Materials Processing Technology, 142(3), 676-683.
https://doi.org/10.1016/S0924-0136(03)00688-5
[8]. Lee, S. H., & Li, X. P. (2001). Study of the effect of
machining parameters on the machining characteristics in
electrical discharge machining of tungsten carbide.
Journal of Materials Processing Technology, 115(3), 344-
358. https://doi.org/10.1016/S0924-0136(01)00992-X
[9]. Li, J., Liu, X., & Zhao, S. (2014). Prediction model of
recast layer thickness in die-sinking EDM process on Ti-6Al-
4V machining through response surface methodology
coupled with least squares support vector machine.
Computer Modelling & New Technologies, 18(7), 398-405.
[10]. Liu, Y. H., Ji, R. J., Li, X. P., Yu, L. L., Zhang, H. F., & Li, Q. Y.
(2008). Effect of machining fluid on the process
performance of electric discharge milling of insulating
Al2O3ceramic. International Journal of Machine Tools and
Manufacture, 48(9),1030-1035. https://doi.org/10.1016/
j.ijmachtools.2007.12.011
[11]. Ming, Q. Y., & He, L. Y. (1995). Powder-suspension
dielectric fluid for EDM. Journal of Materials Processing
Technology, 52(1), 44-54. https://doi.org/10.1016/0924-
036(94)01442-4
[12]. Mohan, B., Rajadurai, A., & Satyanarayana, K. G.
(2002). Effect of SiC and rotation of electrode on electric
discharge machining of Al–SiC composite. Journal of
Materials Processing Technology, 124(3), 297-304.
https://doi.org/10.1016/S0924-0136(02)00202-9
[13]. Mohri, N., Saito, N., Higashi, M., & Kinoshita, N. (1991).
A new process of finish machining on free surface by EDM
methods. CIRP Annals, 40(1), 207-210. https://doi.org/
10.1016/S0007-8506(07)61969-6
[14]. Montgomery, D.C. (2012). Design and Analysis of
Experiments. John Wiley & Sons.
[15]. Morankar, K. S., & Shelke, R. D. (2017). Optimization of
electrical discharge machining process parameters using
SCM420 low alloy steel by response surface methodology.
IOSR Journal of Mechanical and Civil Engineering, 14(1),
75-79. https://doi.org/10.9790/1684-1401047579
[16]. Narumiya, H., Mohri, N., Saito, N., Otake, H.,
Tsnekawa, Y., Takawashi, T., Kobayashi, K. (1989). EDM by
powder suspended working fluid. In Proceedings of 9th ISEM
(pp. 5-8).
[17]. Pandey, P. C., & Shan, H. S. (2004). Modern Machining
Processes. Tata McGraw-Hill Education.
[18]. Pham, D. T., Dimov, S. S., Bigot, S., Ivanov, A., & Popov,
K. (2004). Micro-EDM—recent developments and
research issues. Journal of Materials Processing
Technology, 149(1-3), 50-57. https ://doi.org/10.1016/ j. j m
atprotec.2004.02.008
[19]. Pradhan, M. K. (2010). Experimental Investigation and
Modelling of Surface Integrity, Accuracy and Productivity
Aspects in EDM of AISI D2 Steel (Doctoral Dissertation),
National Institute of Technology, Rourkela, India.
[20]. Puertas, I., Luis, C. J., & Alvarez, L. (2004). Analysis of
the influence of EDM parameters on surface quality, MRR
and EW of WC–Co. Journal of Materials Processing
Technology, 153, 1026-1032. https://doi.org/10.1016/j.jm
atprotec.2004.04.346
[21]. Rajendran, S., Marimuthu, K., & Sakthivel, M. (2013).
Study of crack formation and resolidified layer in EDM
process on T90Mn W50Cr45 tool steel. Materials and 2
Manufacturing Processes, 28(6), 664-669. https://doi.org/
10.1080/10426914.2012.727120
[22]. Rajesha, S., Jawalkar, C. S., Mishra, R. R., Sharma, A.
K., & Kumar, P. (2014). Study of recast layers and surface
roughness on Al-7075 metal matrix composite during EDM
machining. International Journal of Recent Advances in
Mechanical Engineering, 3(1), 53-62.
[23]. Rebelo, J. C., Dias, A. M., Mesquita, R., Vassalo, P., &
Santos, M. (2000). An experimental study on electrodischarge
machining and polishing of high strength
copper–beryllium alloys. Journal of Materials Processing
Technology, 103(3), 389-397. https://doi.org/ 10.1016/
S0924-0136(99)00492-6
[24]. Rizvi, S. A. H., & Agarwal, S. (2016). An investigation on
surface integrity in EDM process with a copper tungsten
electrode. In 18th Conference on Electro Physical and
Chemical Machining, 42, 612-617. https://doi.org/10.1016/j.procir.2016.02.254
[25]. Saha, S. K., & Choudhury, S. K. (2009). Experimental
investigation and empirical modeling of the dry electric
discharge machining process. International Journal
Machine Tools & Manufacture, 49(3-4), 297-308.
https://doi.org/10.1016/j.ijmachtools.2008.10.012
[26]. Shabgard, M., Seyedzavvar, M., & Oliaei, S. N. B.
(2011). Influence of input parameters on the
characteristics of the EDM process. Journal of Mechanical
Engineering, 57(9), 689-696.
[27]. Shather, S. K., & Noori, D. A. K. (2014). Influence of
intervening variables on surface roughness and material
removal rate during WEDM process. Engineering and
Technology Journal, 32 (5-Part (A) Engineering), 1141-1148.
[28]. Shather, S. K., Aghdeab, S. H., & Khudhier, W. S. (2019,
May). Enhancement the thermal effects produce by EDM
using hybrid machining. In IOP Conference Series:
Materials Science and Engineering (Vol. 518, No. 3, pp.
032016). IOP Publishing. https://doi.org/10.1088/1757-
899X/518/3/032016
[29]. Tsai, K. M., & Wang, P. J. (2001). Semi-empirical model
of surface finish on electrical discharge machining.
International Journal of Machine Tools and Manufacture,
41(10), 1455-1477. https://doi.org/10.1016/0924-
0136(94)01442-4
[30]. Wang, P. J., & Tsai, K. M. (2001). Semi-empirical model
on work removal and tool wear in electrical discharge
machining. Journal of Materials Processing Technology,
114(1),1-17. https://doi.org/10.1016/S0924-0136(01)
00733-6
[31]. Zeng, Y. F., & Chen, F. C. (2003). A simple approach for
robust design of high-speed electrical-discharge
machining technology. International Journal of Machine
Tools and Manufacture, 43(3), 217-227. https://doi.org/
10.1016/S0890-6955(02)00261-4