References
[1]. Abdelali, H. M., Harras, B., & Benamar, R. (2014, December). Geometrically non-linear free vibration of fully clamped symmetrically laminated composite skew plates. In Conference on Multiphysics Modelling and Simulation for Systems Design (pp. 443-452). Springer, Cham. https://doi.org/10.1007/978-3-319-14532-7_45
[2]. Ahmad, N., Ranganath, R., & Ghosal, A. (2019). Modeling of the coupled dynamics of damping particles filled in the cells of a honeycomb sandwich plate and experimental validation. Journal of Vibration and Control, 25(11), 1706-1719. https://doi.org/10.1177/1077546319 837584
[3]. Benhenni, M. A., Adim, B., Daouadji, T. H., Abbès, B., Abbès, F., Li, Y., & Bouzidane, A. (2019). A comparison of closed form and finite-element solutions for the free vibration of hybrid crossply laminated plates. Mechanics of Composite Materials, 55(2), 181-194. https://doi.org/ 10.1007/s11029-019-09803-2
[4]. Benjeddou, A., & Guerich, M. (2019). Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach. Advances in Aircraft and Spacecraft Science, 6(2), 169- 187. https://doi.org/10.12989/aas.2019.6.2.169
[5]. Bui, T. Q., Nguyen, M. N., & Zhang, C. (2011). An efficient meshfree method for vibration analysis of laminated composite plates. Computational Mechanics, 48(2), 175-193. https://doi.org/10.1007/s00466-011- 0591-8
[6]. Chakravorty, D., Bandyopadhyay, J. N., & Sinha, P. (1996). Finite element free vibration analysis of doubly curved laminated composite shells. Journal of Sound and Vibration, 191(4), 491-504. https://doi.org/10.1006/jsvi. 1996.0136
[7]. Dai, X., Shao, X., Ma, C., Yun, H., Yang, F., & Zhang, D. (2018). Experimental and numerical investigation on vibration of sandwich plates with Honeycomb Cores Based on Radial Basis Function. Experimental Techniques, 42(1), 79-92. https://doi.org/10.1007/s40799-017-0220-3
[8]. Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov, A. K., & Tamulnas, V. (2013). FRP reinforcement for concrete structures: state-or-the-art review of application and design. Engineering Structures and Technologies, 5(4), 147-158. http://doi.org/10.3846/ 2029882X.2014.889274
[9]. Jianwei, S., Akihiro, N., & Hiroshi, K. (2004). Approximate vibration analysis of laminated curved panel using higher-order shear deformation theory. Acta Mechanica Sinica, 20(3), 238-246. https://doi.org/10. 1007/BF02486716
[10]. Kapania, R. K., & Mohan, P. (1996). Static, free vibration and thermal analysis of composite plates and shells using a flat triangular shell element. Computational Mechanics, 17(5), 343-357. https://doi.org/10.1007/ Bf00368557
[11]. Koide, R. M., França, G. V. Z. D., & Luersen, M. A. (2013). An ant colony algorithm applied to lay-up optimization of laminated composite plates. Latin American Journal of Solids and Structures, 10(3), 491- 504. http://doi.org/10.1590/S1679-78252013000300003
[12]. Lee, W. H., & Han, S. C. (2006). Free and forced vibration analysis of laminated composite plates and shells using a 9-node assumed strain shell element. Computational Mechanics, 39(1), 41-58. https://doi.org/ 10.1007/s00466-005-0007-8
[13]. Noor, A. K. (1973). Free vibrations of multilayered composite plates. AIAA Journal, 11(7), 1038-1039. https://doi.org/10.2514/3.6868
[14]. Reddy, J. N., & Khdeir, A. (1989). Buckling and vibration of laminated composite plates using various plate theories. AIAA Journal, 27(12), 1808-1817. https://doi.org/10.2514/3.10338
[15]. Serhat, G., & Basdogan, I. (2019). Multi-objective optimization of composite plates using lamination parameters. Materials & Design, 180, 1-14. https://doi.org /10.1016/j.matdes.2019.107904
[16]. Xu, R. Q. (2008). Three-dimensional exact solutions for the free vibration of laminated transversely isotropic circular, annular and sectorial plates with unusual boundary conditions. Archive of Applied Mechanics, 78(7), 543-558. https://doi.org/10.1007/s00419-007- 0177-2
[17]. Yi, G., & Sui, Y. (2016). TIMP method for topology optimization of plate structures with displacement constraints under multiple loading cases. Structural and Multidisciplinary Optimization, 53(6), 1185-1196. https://doi.org/10.1007/s00158-015-1314-0
[18]. Zhang, Y. X., & Kim, K. S. (2005). A simple displacement-based 3-node triangular element for linear and geometrically nonlinear analysis of laminated composite plates. Computer Methods in Applied Mechanics and Engineering, 194(45-47), 4607-4632. https://doi.org/10.1016/j.cma.2004.11.011