Concrete develops cracks and get deteriorated, losing its structural performance when exposed to alternate freezing and thawing. Usually, the effect of freezing and thawing in concrete is reduced by lowering the water-cement (w/c) ratio or by using an air-entraining admixture. Researches carried out on bacterial concrete have shown that the CaCO 3 produced by the bacteria seals the micro-cracks and improves the properties of the concrete. In this study, an attempt has been done to investigate the effect of freezing and thawing of Quaternary Blended Bacterial Self-Compacting Concrete (QBBSCC), which is a blend of 40 % cement, 10 % micro-silica, 25 % fly ash and 25 % GGBFS (Ground-Granulated Blast-Furnace Slag). Bacillus Subtilis bacteria was selected for this study. For water-binder (w/b) ratios 0.3 and 0.4, super-plasticizer of 1.8 % and 1.6% by weight of binder respectively were used. QBBSCC cubes were subjected to 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 numbers of freeze-thaw cycles in an ice-cream freezer box. Each freeze-thaw cycle comprised of freezing the samples from 10 ºC to -10 ºC within two hours, then maintaining the temperature at -10 ºC for half-an-hour and thawing from -10 ºC to 10 ºC within another two hours i.e., a freezing rate of 10ºC/hr was adopted. Weight loss, residual compressive strength, dynamic modulus of elasticity, and relative dynamic modulus of elasticity were evaluated. From the result, it was found that QBBSCC exhibited better freeze-thaw resistance than reference concrete without bacteria, Quaternary Blended Self-Compacting Concrete (QBSCC).