References
[1]. Bouzaida, S., Sakly, A., & M'Sahli, F. (2013). Extracting TSK-type neuro-fuzzy model using the hunting search algorithm. International Journal of General Systems, 43(1), 32-43. https://doi.org/ 10.1080/ 03081079 .2013 84 8355
[2]. Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez- Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384. https://doi.org/ 10.1016/j.eswa.2013.05.041
[3]. de-Souza, J. G., & Costa, J. A. F. (2009, October). Unsupervised data clustering and image segmentation using natural computing techniques. In 2009 IEEE International Conference on Systems, Man and Cybernetics (pp. 5045-5050). IEEE. https://doi.org/ 10.1109/ICSMC.2009.5346039
[4]. Desale, S., Rasool, A., Andhale, S., & Rane, P. (2015). Heuristic and Meta-Heuristic algorithms and their relevance to the real world: A survey. International Journal of Computer Engineering in Research Trends, 2(5), 296- 304.
[5]. Humphreys, R. K., & Ruxton, G. D. (2018). A review of thanatosis (death feigning) as an anti-predator behaviour. Behavioral Ecology and Sociobiology, 72(22),1-16. https://doi.org/10.1007/s00265-017-2436-8
[6]. Kahvazadeh, I., & Abadeh, M. S. (2015). MOCANAR: A multi-objective cuckoo search algorithm for numeric association rule discovery. Computer Science & Information Technology, 99-113. https://doi.org/10.5121/ csit.2015.51509
[7]. Li, G., Liu, Q., Yang, Y., Zhao, F., Zhou, Y., & Guo, C. (2017, July). An improved differential evolution based artificial fish swarm algorithm and its application to AGV path planning problems. In 2017 36th Chinese Control Conference (CCC) (pp. 2556-2561). IEEE. https://doi.org/ 10.23919/ChiCC.2017.8027746
[8]. Lou, Y., & Yuen, S. Y. (2019). On constructing alternative benchmark suite for evolutionary algorithms. Swarm and Evolutionary Computation, 44, 287-292. https://doi.org/ 10.1016/j.swevo.2018.04.005
[9]. Oftadeh, R., & Mahjoob, M. J. (2009, September). A new meta-heuristic optimization algorithm: Hunting search. In 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision, and Control (pp. 1-5). IEEE. https:/ /doi.org/ 10.1109/ICSCCW.2009.5379451
[10]. Oftadeh, R., Mahjoob, M. J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Computers & Mathematics with Applications, 60(7), 2087- 2098. https://doi.org/10.1016/ j.cam wa.20 10.07.049
[11]. Omran, M. G., & Al-Sharhan, S. (2019). Improved continuous ant colony optimization algorithms for realworld engineering optimization problems. Engineering Applications of Artificial Intelligence, 85, 818-829. https://doi.org/10.1016/j.engappai.2019.08.009
[12]. Rajakumar, B. R. (2012). The Lion's Algorithm: A new Nature-Inspired search algorithm. Procedia Technology, 6,126-135. https://doi.org/ 10.101 6/j.protcy.2012.10.016
[13]. Said, G. A. E. N. A., Mahmoud, A. M., & El-Horbaty, E.S. M. (2014). A comparative study of Meta-heuristic algorithms for solving quadratic assignment problem. International Journal of Advanced Computer Science and Applications, 5(1), 1-6. https://doi.org/10.14569/IJAC SA.2014.050101
[14]. Sakulin, A., & Puangdownreong, D. (2012). A novel Meta-Heuristic optimization algorithm: Current search. Recent Researches in Artificial Intelligence and Database Management, 125-130.
[15]. Wang, B., Jin, X., & Cheng, B. (2012). Lion pride optimizer: An optimization algorithm inspired by lion pride behavior. Science China Information Sciences, 55(10), 2369-2389.
[16]. Yazdani, M., & Jolai, F. (2016). Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm. Journal of Computational Design and Engineering, 3(1), 24-36. https://doi.org/ 10.1016/ j.jcde.2015.06.003
[17]. Zhang, Z., Ding, S., & Jia, W. (2019). A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Engineering Applications of Artificial Intelligence, 85, 254-268. https://doi.org/10.1016/j.enga ppai.2019.06.017