References
[1]. Ahmad, R. W. (2009). Pelvic Inflammatory Disease -An Ovarian Infection. Daily Trust. Retrieved from www.daily trust.com
[2]. Amato, F., López, J., Méndez, V. P., Hampl, & Havel, J. (2013). Artificial Neural Networks combined with experimental design: A soft approach for chemical kinetics. Talanta 93, 72-78. Retrieved from http://jab.zsf.jcu.cz// 11_2/havel.html
[3]. B.K.S. Gul, Z.L. Albati, R.R. I Badr, Z.M. Alfaraj, A.S. Almatrafi, A.A. Banoun, R.M.H. Maki, S.F. Bagdood, A.S. Aljuhani and A.S. Alahmari (2018), Pelvic Inflammatory Disease, Egyptian, Journal of Hospital Medicine, Vol 70 issue 9, pp. 1464-1467.
[4]. Bagdood, S., F., AlJuhani, A., S., & Alahmari, A., S. (2018). Pelvic Inflammatory Disease. The Egyptian Journal of Hospital Medicine, 70(9), 1464-1467.
[5]. Barbosa, D. C., Roupar, D. B., Ramos, J. C., Tavares, A. C., & Lima, C. S. (2012). Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images. Biomedical Engineering Online, 11(1), 3-17.
[6]. Barwad, A., Dey, P., & Susheilia, S. (2012). Artificial neural network in diagnosis of metastatic carcinoma in effusion cytology. Cytometry Part B: Clinical Cytometry, 82(2), 107-111.
[7]. Baxt, W. G. (1995). Application of artificial neural networks (ANNs) to clinical medicine, Lancet, 346 (8983) 1135-1138. https://doi.org/10.1016/S0140-6736(95) 91804-3
[8]. Bugg, C. W., & Wand, T. (2016). Taira Emerg Med Pract, 18, 1-24. Epub 1 Dec 2016.
[9]. Catalogna, M., Cohen, E., Fishman, S., Halpern, Z., Nevo, U., & Ben-Jacob, E. (2012). Artificial Neural Networks based controller for glucose monitoring during clamp test. PloS One, 7(8), e44587.
[10]. Dayal, S., Singh, A., Chaturvedi, V., Krishna, M., & Gupta, V. (2016). Pattern of Pelvic Inflammatory Disease in women who attended the tertiary care hospital among the rural population of North India. Muller Journal of Medical Sciences and Research, 7(2), 100-104.
[11]. de Canete, J. F., Gonzalez-Perez, S., & Ramos-Diaz, J. C. (2012). Artificial Neural Networks for closed loop control of in silico and ad hoc type 1 diabetes. Computer Methods and Programs in Biomedicine, 106(1), 55-66.
[12]. Dey, P., Lamba, A., Kumari, S., & Marwaha, N. (2012). Application of an artificial neural network in the prognosis of chronic myeloid leukemia. Analytical and Quantitative Cytology and Histology, 33(6), 335-339.
[13]. Elveren, E., & Yumuşak, N. (2011). Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. Journal of Medical Systems, 35(3), 329-332.
[14]. Higuera, V. (2016). Pelvic Inflammatory Disease. In Healthline. Retrieved from http://www.healthline.com/ health/pelvic-inflammatory-disease-pid#overview1
[15]. Jefferson, M. F., Pendleton, N., Lucas, S. B., & Horan, M. A. (1997). Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer: Interdisciplinary International Journal of the American Cancer Society, 79(7), 1338- 1342.
[16]. Mahesh, C., & Manjula, B. (2013). Diagnosing hepatitis B using Artificial Neural Network based expert system. International Journal of Engineering and Innovative Technology, 3(6) , 139-144.
[17]. Pelvic Inflammatory Disease (PID). Centre for Disease Control (CDC) Fact Sheet. American Social Health Association (ASHA), 2014, pp 1
[18]. Pipa, O., Sally, K., Adamma, A., Helen, A., Sima, H., David, T., Ian, S., & Phillip, H. (2010). Randomised Controlled Trial of Screening for chlamydia trachomatis to prevent Pelvic Inflammatory Disease: The POPI (Prevention of Pelvic Infection) Trial Article.
[19]. Polat, K., & Güneş, S. (2007). Breast cancer diagnosis using least square Support Vector Machine. Digital Signal Processing, 17(4), 694 701. https://doi.org/10.1016/ j.dsp.2006.10.008.
[20]. Price, M. J., Ades, A. E., De Angelis, D., Welton, N. J., Macleod, J., Soldan, K., ... & Horner, P. J. (2013). Risk of Pelvic Inflammatory Disease following Chlamydia trachomatis infection: Analysis of prospective studies with a multistate model. American Journal of Epidemiology, 178(3), 484-492.
[21]. Price, M. J., Ades, A. E., Welton, N. J., Simms, I., Macleod, J., & Horner, P. J. (2016). Proportion of pelvic inflammatory disease cases caused by Chlamydia trachomatis: consistent picture from different methods. The Journal of Infectious Diseases, 214(4), 617-624.
[22]. Rekart, M. L., Gilbert, M., Meza, R., Kim, P. H., Chang, M., Money, D. M., & Brunham, R. C. (2012). Chlamydia public health programs and the epidemiology of Pelvic Inflammatory Disease and ectopic pregnancy. The Journal of Infectious Diseases, 207(1), 30-38.
[23]. Saba, T., Al-Zahrani, S., & Rehman, A. (2012). Expert system for offline clinical guidelines and treatment. Life Science Journal, 9(4), 2639-2658.
[24]. Schindlbeck, C., Dziura, D., & Mylonas, I. (2014). Diagnosis of Pelvic Inflammatory Disease (PID): intraoperative findings and comparison of vaginal and intraabdominal cultures. Archives of Gynecology and Obstetrics, 289(6), 1263-1269.
[25]. Shannon, W., & Sarah, M. (2018). Pelvic Inflammatory Disease. Royal Australian and New Zealand College of Obstetricians and Gynaecologists, East Melbourne Victoria, 3002, Australia, 2018.
[26]. Shanthi, D., Sahoo, G., & Saravanan, N. (2009). Designing an Artificial Neural Network model for the prediction of thrombo-embolic stroke. International Journals of Biometric and Bioinformatics (IJBB), 3(1), 10- 18.
[27]. Shi, L., Wang, X. C., & Wang, Y. S. (2013). Artificial Neural Network models for predicting 1-year mortality in elderly patients with intertrochanteric fractures in China. Brazilian Journal of Medical and Biological Research, 46(11), 993-999. http://dx.doi.org/10.1590/1414- 431X20132948
[28]. Trent, M., (2013). Pelvic Inflammatory Disease, Pediatrics in Review, 34(4), 163-172.
[29]. Visa, S., Ramsay, B., Ralescu, A. L., & Van Der Knaap, E. (2011). Confusion Matrix-based Feature Selection. MAICS, 710, 120-127.