Grid Integration and power Quality Improvement of Smart Grid

Sayan Paramanik*, Krishna Sarker**, Ch. V. Ramachandra Murthy***
* Department of Customer support (Railway Engineering), Autometers Alliance Ltd., Noida, Uttar Pradesh, India.
**-*** Department of Electrical Engineering, Techno India Group, Saltlake, Kolkata, West Bengal, India.
Periodicity:February - April'2019
DOI : https://doi.org/10.26634/jps.7.1.16501

Abstract

This paper investigates the combined operation of simulation and hardware based smart grid technology in small scale system. The proposed system can efficiently control the voltage sag, swell, flicker, neutral current, harmonics, active and reactive power by using powerful custom power devices such as Dynamic Voltage Restorer (DVR), Static Compensator (STATCOM) and Unified Power Quality Conditioner (UPQC) with Diesel generator (DG) and Storage system. Because of rising population, industry transportation and the demand of energy is increasing day by day. Our electrical grid is intended to control in pure sine wave except for unpredictable load unbalancing and power electronics switching injects the non-linearity to the system. The proposed system also described the integrated smart grid with distributed renewable energies and power quality improvement using inducverters techniques with smart bi-directional controls based on IoT. The various simulation results are executed and supported by suitable hardware experiments for verification of the proposed model which provide satisfactory results.

Keywords

Renewable Energies, Smart Meter, PMU (Phasor Measurement Unit), Flow Meter, GPS (Global Positioning System), Wi-fi, PLL, Inducverters.

How to Cite this Article?

Paramanik, S., Sarker, K., and Sarker, J. (2019 Grid Integration and power Quality Improvement of Smart Grid. i-manager’s Journal on Power Systems Engineering, 7(1), 29-42. https://doi.org/10.26634/jps.7.1.16501

References

[1]. Alam, M. J. E., Muttaqi, K. M., & Sutanto, D. (2015). Effective utilization of available PEV battery capacity for mitigation of solar PV impact and grid support with integrated V2G functionality. IEEE Transactions on Smart Grid, 7(3), 1562-1571. https://doi.org/10.1109/TSG.2015. 2487514
[2]. Angulo, M., Ruiz-Caballero, D. A., Lago, J., Heldwein, M. L., & Mussa, S. A. (2012). Active power filter control strategy with implicit closed-loop current control and resonant controller. IEEE Transactions on Industrial Electronics, 60(7), 2721-2730 https://doi.org/10.1109/TIE. 2012.2196898
[3]. Ashabani, M., Freijedo, F. D., Golestan, S., & Guerrero, J. M. (2015). Inducverters: PLL-less converters with autosynchronization and emulated inertia capability. IEEE Transactions on Smart Grid, 7(3), 1660-1674. https://doi. org/10.1109/TSG.2015.2468600
[4]. Bhattacharya, A., Chakraborty, C., & Bhattacharya, S. (2011). Parallel-connected shunt hybrid active power filters operating at different switching frequencies for improved performance. IEEE Transactions on Industrial Electronics, 59(11), 4007-4019. https://doi.org/10.1109/ TIE.2011.2173893
[5]. Chen, Z., Luo, Y., & Chen, M. (2011). Control and performance of a cascaded shunt active power filter for aircraft electric power system. IEEE Transactions on Industrial Electronics, 59(9), 3614-3623. https://doi.org/ 10.1109/TIE.2011.2166231
[6]. Du, X., Zhou, L., Lu, H., & Tai, H. M. (2011). DC link active power filter for three-phase diode rectifier. IEEE Transactions on Industrial Electronics, 59(3), 1430-1442. https://doi.org/10.1109/TIE.2011.2167112
[7]. Dugan, R. C., McGranaghan, M. F., & Beaty, H. W. (1996). Electrical Power Systems Quality. (2nd Ed.). New York: McGraw-Hill.
[8]. Fan-hui, Z., & Ru-dong, G. (2006, October). Demand disruption management for supply chain system with quantity discount contract. In 2006 International Conference on Management Science and Engineering (pp. 697-700). IEEE. https://doi.org/10.1109/ICMSE.2006. 313991
[9]. Flores, P., Dixon, J., Ortúzar, M., Carmi, R., Barriuso, P., & Morán, L. (2008). Static var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells. IEEE Transactions on Industrial Electronics, 56(1), 130-138. https://doi.org/10. 1109/TIE.2008.927229
[10]. Golovanov, N., Lazaroiu, G. C., & Porumb, R. (2013, September). Wind generation assessment proposal by experimental harmonic and distortion factor analysis. In 2013 48th International Universities' Power Engineering Conference (UPEC) (pp. 1-4). IEEE. https://doi.org/10. 1109/UPEC.2013.6715045
[11]. Hamadi, A., Rahmani, S., & Al-Haddad, K. (2009). A hybrid passive filter configuration for VAR control and harmonic compensation. IEEE Transactions on Industrial Electronics, 57(7), 2419-2434. https://doi.org/10.1109/ TIE.2009.2035460
[12]. Hamadi, A., Rahmani, S., & Al-Haddad, K. (2013). Digital control of a shunt hybrid power filter adopting a nonlinear control approach. IEEE Transactions on Industrial Informatics, 9(4), 2092-2104. https://doi.org/10. 1109/TII.2013.2245139
[13]. Hu, H., Shi, W., Lu, Y., & Xing, Y. (2011). Design considerations for DSP-controlled 400 Hz shunt active power filter in an aircraft power system. IEEE Transactions on Industrial Electronics, 59(9), 3624-3634. https://doi. org/10.1109/TIE.2011.2165452
[14]. Huang, B. B., Xie, G. H., Kong, W. Z., & Li, Q. H. (2012, May). Study on smart grid and key technology system to promote the development of distributed generation. In IEEE PES Innovative Smart Grid Technologies (pp. 1-4). IEEE. https://doi.org/10.1109/ISGT-Asia.2012.6303265
[15]. Lam, C. S., Choi, W. H., Wong, M. C., & Han, Y. D. (2011). Adaptive DC-link voltage-controlled hybrid active power filters for reactive power compensation. IEEE Transactions on Power Electronics, 27(4), 1758-1772. https://doi.org/10.1109/TPEL.2011.2169992
[16]. Li, S., & Wang, X. (2015). Cooperative change detection for voltage quality monitoring in smart grids. IEEE Transactions on Information Forensics and Security, 11(1), 86-99. https://doi.org/10.1109/TIFS.2015.2477796
[17]. Liu, J., Zanchetta, P., Degano, M., & Lavopa, E. (2011). Control design and implementation for high performance shunt active filters in aircraft power grids. IEEE Transactions on Industrial Electronics, 59(9), 3604- 3613. https://doi.org/10.1109/TIE.2011.2165454
[18]. Luo, A., Peng, S., Wu, C., Wu, J., & Shuai, Z. (2011). Power electronic hybrid system for load balancing compensation and frequency-selective harmonic suppression. IEEE Transactions on Industrial Electronics, 59(2), 723-732. https://doi.org/10.1109/TIE.2011.2161066
[19]. Luo, A., Shuai, Z., Zhu, W., & Shen, Z. J. (2008). Combined system for harmonic suppression and reactive power compensation. IEEE Transactions on Industrial Electronics, 56(2), 418-428. https://doi.org/10.1109/TIE. 2008.2008357
[20]. Luo, A., Xu, X., Fang, L., Fang, H., Wu, J., & Wu, C. (2010). Feedback-feedforward PI-type iterative learning control strategy for hybrid active power filter with injection circuit. IEEE Transactions on Industrial Electronics, 57(11), 3767-3779. https://doi.org/10.1109/TIE.2010.2040567
[21]. Milanés-Montero, M. I., Romero-Cadaval, E., & Barrero-González, F. (2010). Hybrid multiconverter conditioner topology for high-power applications. IEEE Transactions on Industrial Electronics, 58(6), 2283-2292 https://doi.org/10.1109/TIE.2010.2062478.
[22]. Muñoz, J. A., Espinoza, J. R., Baier, C. R., Morán, L. A., Espinosa, E. E., Melin, P. E., & Sbarbaro, D. G. (2011). Design of a discrete-time linear control strategy for a multicell UPQC. IEEE Transactions on Industrial Electronics, 59(10), 3797-3807. https://doi.org/10.1109/TIE.2011. 2160511
[23]. Phadke, A. G., & Thorp, J. S. (2008). Synchronized Phasor Measurements and their Applications. New York: Springer. https://doi.org/10.1007/978-3-319-50584-8
[24]. Pradhan, R., & Subudhi, B. (2015). Double integral sliding mode MPPT control of a photovoltaic system. IEEE Transactions on Control Systems Technology, 24(1), 285- 292. https://doi.org/10.1109/TCST.2015.2420674
[25]. Rahmani, S., Hamadi, A., & Al-Haddad, K. (2011). A Lyapunov-function-based control for a three-phase shunt hybrid active filter. IEEE Transactions on Industrial Electronics, 59(3), 1418-1429. https://doi.org/10.1109/ TIE.2011.2163370
[26]. Rahmani, S., Hamadi, A., Al-Haddad, K., & Alolah, A. I. (2013). A DSP-based implementation of an instantaneous current control for a three-phase shunt hybrid power filter. Mathematics and Computers in Simulation, 91, 229-248. https://doi.org/10.1016/j. matcom.2012.09.013
[27]. Rahmani, S., Hamadi, A., Mendalek, N., & Al- Haddad, K. (2009). A new control technique for threephase shunt hybrid power filter. IEEE Transactions on Industrial Electronics, 56(8), 2904-2915. https://doi.org/ 10.1109/TIE.2008.2010829
[28]. Samadi, P., Mohsenian-Rad, H., Schober, R., & Wong, V. W. (2012). Advanced demand side management for the future smart grid using mechanism design. IEEE Transactions on Smart Grid, 3(3), 1170-1180. https://doi.org/10.1109/TSG.2012.2203341
[29]. Silva, C. A., Córdova, L. A., Lezana, P., & Empringham, L. (2010). Implementation and control of a hybrid multilevel converter with floating DC links for current waveform improvement. IEEE Transactions on Industrial Electronics, 58(6), 2304-2312. https://doi.org/10.1109/TIE. 2010.2064277
[30]. Swain, S., & Subudhi, B. (2017). A new grid synchronisation scheme for a three-phase PV system using self-tuning filtering approach. IET Generation, Transmission & Distribution, 11(14), 3557-3567. https://doi. org/10.1049/iet-gtd.2017.0142
[31]. Tang, Y., Loh, P. C., Wang, P., Choo, F. H., Gao, F., & Blaabjerg, F. (2011). Generalized design of high performance shunt active power filter with output LCL filter. IEEE Transactions on Industrial Electronics, 59(3), 1443-1452. https://doi.org/10.1109/TIE.2011.2167117
[32]. Tong, H., Ni, M., & Yu, W. (2014, October). An optical repeater technology for ultra-long haul optical communication in ultra-high voltage grid system. In 2014 International Conference on Power System Technology (pp. 1869-1874). IEEE. https://doi.org/10.1109/ POWERCON.2014.6993749
[33]. Xianwei, W., Fang, Z., Jing, L., Lin, W., & Song, N. (2013). Modeling and control of dual-stage high-power multifunctional PV system in dq-0 coordinate. IEEE Transactions on Industrial Electronics, 60(4), 1556-1570. https://doi.org/10.1109/TIE.2012.2196898
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.