References
[1]. Akin, J. E. (2009). Buckling Analysis. Retrieved from
https://www.clear.rice.edu/mech403/HelpFiles/FEA_Buckl
ing_analysis.pdf
[2]. Almeida, V. S., Simonetti, H. L., & Neto, L. O. (2013).
Comparative analysis of strut-and-tie models using
smooth evolutionary structural optimization. Engineering
Structures, 56, 1665-1675. https://doi.org/10.1016/j.eng
struct.2013.07.007
[3]. Amir, O., & Sigmund, O. (2013). Reinforcement layout
design for concrete structures based on continuum
damage and truss topology optimization. Structural and
Multidisciplinary Optimization, 47(2), 157-174. https://doi.org/10.1007/s00158-012-0817-1
[4]. Bhavani, K. D., Kumar, J. D. C., & Rao, M. L. S. R.
(2019). Development of shear strength expression for Rc
corbels using Strut-and-Tie model. International Journal of
Recent Technology and Engineering (IJRTE), 7(6C2), 423-
428.
[5]. Canha, R. M. F., Kuchma, D. A., El Debs, M. K., & de
Souza, R. A. (2014). Numerical analysis of reinforced high
strength concrete corbels. Engineering Structures, 74,
130-144. https://doi.org/10.1016/j.engstruct.2014.05.014
[6]. Chandrupatla, T. R., & Belegundu, A. D. (2002).
Introduction to Finite Elements in Engineering (3rd ed.),
Upper Saddle River, New Jersey: Prentice Hall.
[7]. Clough, R. W., & Penzien, J. (2003). Dynamics of
Structures (3rd ed.), Newyork, US: McGraw-Hill Education.
[8]. He, Z. Q., Liu, Z., & John Ma, Z. (2012). Investigation of
load-transfer mechanisms in deep beams and corbels.
ACI Structural Journal-American Concrete Institute,
109(4), 467-476.
[9]. Hwang, S. J., Lu, W. Y., & Lee, H. J. (2000). Shear
strength prediction for reinforced concrete corbels.
Structural Journal, 97(4), 543-552.
[10]. Kwak, H. G., & Noh, S. H. (2006). Determination of
strut-and-tie models using evolutionar y structural
optimization. Engineering Structures, 28(10), 1440-1449.
https://doi.org/10.1016/j.engstruct.2006.01.013
[11]. Liang, Q. Q., Xie, Y. M., Steven, G. P., & Schmidt, L. C.
(1999). Topology optimization of strut-and-tie models in
non-flexural reinforced concrete members. In
Proceedings of the International Conference on
Mechanics of Structures, Materials and Systems (Vol. 1,
pp. 309-315), Australia.
[12]. Mattock, A. H. (1976). Design proposals for
reinforced concrete corbels. PCI Journal, 21(3), 18-42.
[13]. Mattock, A. H., & Johal, L. (1975). Shear transfer in
reinforced concrete with moment or tension acting
across the shear plane. PCI Journal, 77-93.
[14]. Ozkal, F. M., & Uysal, H. (2017). Reinforcement
detailing of a corbel via an integrated strut-and-tie
modeling approach. Computers and Concrete, 19(5), 589-97. https://doi.org/10.12989/cac.2017.19.5.589
[15]. Prasad, H. R., Channakeshava, C., Prasad, B. R., &
Iyengar, K. S. R. (1993). Nonlinear finite element analysis
of reinforced concrete corbel. Computers & Structures,
46(2), 343-354. https://doi.org/10.1016/0045-7949(93)
90199-N
[16]. Raju, N. K. (2016). Advanced Reinforced Concrete
Design (3rd ed.), New Delhi, India: CBS publishers and
Distributors.
[17]. Russo, G., Venir, R., Pauletta, M., & Somma, G.
(2006). Reinforced concrete corbels-shear strength
model and design formula. ACI Structural Journal, 103(1),
3-10.
[18]. Shobeiri, V., & Ahmadi-Nedushan, B. (2017). Bidirectional
evolutionary structural optimization for strutand-
tie modelling of three-dimensional structural
concrete. Engineering Optimization, 49(12), 2055-2078.
https://doi.org/10.1080/0305215X.2017.1292382
[19]. Solanki, H., & Sabnis, G. M. (1987). Reinforced
concrete corbels-simplified. Structural Journal, 84(5),
428-432.
[20]. Syroka, E., Bobiński, J., & Tejchman, J. (2011). FE
analysis of reinforced concrete corbels with enhanced
continuum models. Finite Elements in Analysis and
Design, 47(9), 1066-1078. https://doi.org/10.1016/j.finel.
2011.03.022
[21]. Tamta, S., & Saxena, R. (2016). Topological
optimization of continuum structures using optimality
criterion in ANSYS. International Research Journal of
Engineering and Technology, 3(7), 1483-1488.
[22]. Victoria, M., Querin, O. M., & Martí, P. (2011).
Generation of strut-and-tie models by topology design
using different material properties in tension and
compression. Structural and Multidisciplinar y
Optimization, 44(2), 247-258. https://doi.org/10.1007/s0
0158-011-0633-z