References
[1]. Adam, A. A., & Horianto, X. X. X. (2014). The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Engineering, 95, 410-414. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0000161
[2]. Alekhya, P., & Aravindan, S. (2014). Experimental investigations on geopolymer concrete. International Journal of Civil Engineering and Technology (IJCIET), 5(4), 1-9.
[3]. Bhavsar, G. D., Talavia, K. R., Suthar, D. P., Amin, M. B., & Parmar, A. A. (2014). Workability properties of geopolymer concrete using accelerator and silica fume as an admixture. International Journal for Technological Research in Engineering, 1(8), 541-544.
[4]. Chindaprasirt, P., Chareerat, T., Hatanaka, S., & Cao, T. (2010). High-strength geopolymer using fine highcalcium fly ash. Journal of Materials in Civil Engineering, 23(3), 264-270.
[5]. Dutta, D., Thokchom, S., Ghosh, P., & Ghosh, S. (2010). Effect of silica fume additions on porosity of fly ash geopolymers. ARPN Journal of Engineering and Applied Sciences, 5(10), 74-79.
[6]. Gopal, K. M., & Kiran, B. N. (2013). Investigation on behaviour of fly ash based geopolymer concrete in acidic environment. International Journal of Modern Engineering Research, 3(1), 580-586.
[7]. Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica, 19(5), 1188- 1194. https://doi.org/10.1016/j.scient.2012.07.006
[8]. Joshi, S. V., & Kadu, M. S. (2012). Role of alkaline activator in development of eco-friendly fly ash based geo polymer concrete. International Journal of Environmental Science and Development, 3(5), 417-421.
[9]. Kishanrao, M. P. (2013). Design of geopolymer concrete. International Journal of Innovative Research in Science, Engineering and Technology, 2(5), 1841-1844.
[10]. Komnitsas, K. A. (2011). Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Engineering, 21, 1023-1032. https://doi.org/10.1016/j.proeng.2011.11.2108
[11]. Kong, D. L., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and Concrete Research, 40(2), 334-339. https://doi.org/10.1016/j.cemconres.2009. 10.017
[12]. Lloyd, N., & Rangan, V. (2010). Geopolymer concrete with fly ash. In Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies (pp. 1493-1504). UWM Center for By-Products Utilization.
[13]. Mathew, M. B. J., Sudhakar, M. M., & Natarajan, D. C. (2013). Strength, economic and sustainability characteristics of coal ash–GGBS based geopolymer concrete. International Journal of Computational Engineering Research, 3(1), 207-212.
[14]. McLellan, B. C., Williams, R. P., Lay, J., Riessen, A. V., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9-10), 1080- 1090. https://doi.org/10.1016/j.jclepro.2011.02.010
[15]. Naidu, P. G., Adiseshu, S., & Satayanarayana, P. V. V. (2012). A study on strength properties of geopolymer concrete with addition of GGBS. International Journal of Engineering Research and Development, 2(4), 19-28.
[16]. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
[17]. Parthiban, K., Saravanarajamohan, K., Shobana, S., & Bhaskar, A. A. (2013). Effect of replacement of slag on the mechanical properties of fly ash based geopolymer concrete. International Journal of Engineering and Technology (IJET), 5(3), 2555-2559.
[18]. Rajarajeswari, A., & Dhinakaran, G. (2014). Effect of alkaline liquid to silica fume and SiO to oh ratio on 3 compressive strength of geopolymer concrete. International Journal of Chem Tech Research CODEN (USA): IJCRGG, 6(1), 375-383.
[19]. Ramujee, K., & Potharaju, M. (2013). Development of mix design for low calcium based geopolymer concrete in low, medium and higher grades-Indian scenario. Journal of Civil Engineering and Technology, 1(1), 15-25.
[20]. Reddy, D. V., Edouard, J. B., Sobhan, K., & Tipnis, A. (2011, August). Experimental evaluation of the durability of fly ash-based geopolymer concrete in the marine environment. In 9th Latin American and Caribbean Conference for Engineering and Technology (pp. 43-52).
[21]. Sarker, P. K., Haque, R., & Ramgolam, K. V. (2013). Fracture behaviour of heat cured fly ash based geopolymer concrete. Materials & Design, 44, 580-586. https://doi.org/10.1016/j.matdes.2012.08.005
[22]. Supraja, V., & Rao, M. K. (2011). Experimental study on Geo-Polymer concrete incorporating GGBS. International Journal of Electronics, Communication & Soft Computing Science and Engineering, 2(2), 11-15.
[23]. Vijai, K., Kumutha, R., & Vishnuram, B. G. (2013). Experimental investigations on mechanical properties of geopolymer concrete composites. Asian Journal of Civil Engineering (Building and Housing), 13(1), 89-96.
[24]. Vora, P. R., & Dave, U. V. (2013). Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210-219. https://doi.org/10.1016/j. proeng.2013.01.030