References
[1]. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared to state-of- the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274- 2282.
[2]. Bindu., C., H., & Chandra., B. S. (July 2016). Medical images enhancement by homomorphic filtering equalization. International Advanced Research Journal in Science, Engineering and Technology, 3(7), 183-185.
[3]. Cruz, J. P. N., Dimaala, M. L., Francisco, L. G. L., Franco, E. J. S., Bandala, A. A., & Dadios, E. P. (2013, March). Object recognition and detection by shape and color pattern recognition utilizing Artificial Neural Networks. In 2013 International Conference of Information and Communication Technology (ICoICT) (pp. 140-144).
[4]. Dileep, D., & Nair, R. S. (2014, July). Weighted pixel aggregation segmentation on outdoor scene images. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) (pp. 819-823). IEEE. https://doi.org/10.1109/ICCICCT.2014.6993071
[5]. Dunlop, H. (2006). Automatic rock detection and classification in natural scenes, (Masters Thesis, Carnegie Mellon University).
[6]. Feng, D., Haase-Schuetz, C., Rosenbaum, L., Hertlein, H., Duffhauss, F., Glaeser, C., & Dietmayer, K. (2019). Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. arXiv preprint arXiv:1902.07830.
[7]. Hussin, R., Juhari, M. R., Kang, N. W., Ismail, R. C., & Kamarudin, A. (2012). Digital image processing techniques for object detection from complex background image. Procedia Engineering, 41, 340-344.
[8]. Kalina, J. (2012). Implicitly weighted methods in robust image analysis. Journal of Mathematical Imaging and Vision, 44(3), 449-462.
[9]. Li, K., Pham, T., Zhan, H., & Reid, I. (2018). Efficient dense point cloud object reconstruction using deformation vector fields. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 497-513).
[10]. Lin, C. H., Kong, C., & Lucey, S. (2018, April). Learning efficient point cloud generation for dense 3D object reconstruction. In Thirty-Second AAAI Conference on Artificial Intelligence, 1-10.
[11]. Mineo, C., Pierce, S. G., & Summan, R. (2019). Novel algorithms for 3D surface point cloud boundary detection and edge, Journal of Computational Design and Engineering, 6(1), 81-91. https://doi.org/10.1016/ j.jcde.2018.02.001
[12]. Priya, C. S. (2015). Object weight estimation from 2- images. ARPN Journal of Engineering and Applied Sciences, 10(17), 7574-7578.
[13]. Rethage, D., Wald, J., Sturm, J., Navab, N., & Tombari, F. (2018). Fully-convolutional point networks for large-scale point clouds. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 596-611).
[14]. Sabliov, C. M., Boldor, D., Keener, K. M., & Farkas, B. E. (2002). Image processing method to determine surface area and volume of axi-symmetric agricultural products. International Journal of Food Properties, 5(3), 641-653.
[15]. Terekhin, A. V. (2016, November). Classification model for flat nonconvex images using diagonal segments and tuples for system of automatic recognition of three-dimensional objects. In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics) (pp. 1- 5). IEEE. https://doi.org/10.1109/Dynamics.2016.7819096
[16]. Wang, W. (2005, July). Image segmentation of irregular shape grains on ceramic material surfaces. In International Conference on Computer Graphics, Imaging and Visualization (CGIV'05) (pp. 49-54). IEEE. DOI: 10.1109/CGIV.2005.44
[17]. Wu, J., Zhang, C., Xue, T., Freeman, B., & Tenenbaum, J. (2016). Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In Advances in Neural Information Processing Systems (pp. 82-90).
[18]. Xu, X., Li, G., Xie, G., Ren, J., & Xie, X. (2019). Weakly supervised deep semantic segmentation using CNN and ELM with semantic candidate regions. Complexity, 2019. https://doi.org/10.1155/2019/9180391
[19]. Zhang, C., Luo, W., & Urtasun, R. (2018, September). Efficient convolutions for real-time semantic segmentation of 3d point clouds. In 2018 International Conference on 3D Vision (3DV) (pp. 399-408). IEEE.