Some Studies of Mechanical and Thermal Behaviour of CNT based E-Glass Fibre Composites

0*, Aditya Kolakoti**
* Department of Mechanical Engineering, Pragati Engineering College, Surampalem, Andhra Pradesh, India.
** Department of Mechanical Engineering, Raghu Engineering College, Dakamarri, Visakhapatnam, Andhra Pradesh, India.
Periodicity:August - October'2019
DOI : https://doi.org/10.26634/jme.9.4.16441

Abstract

In this study, a fifteen number of specimens is fabricated by polymers with filler material multi-walled carbon nanotubes (MWCNTs) for proposed percentages and for three different orientations of glass fibre. Morphological examination is carried by Scanning Electron Microscopy. The mechanical and thermal properties of the laminates is characterized by tensile, flexural, hardness, and thermogravimetric analysis. Results reveal that the mechanical properties are improved by reinforcing the filler material up to the low percentage due to the uniform distribution in matrix materials. The thermal analysis demonstrate that the increase in MWCNTs, results in an increase in the thermal stability of composites up to 3% due to the strong chemical linkage between the CNTs and the matrix material. On further reinforcement of CNTs, the thermal stability decreases due to formation of aggregation of CNTs. By comparing experimental data and statistical data of mechanical and thermal behaviour, no disparity was observed.

Keywords

MWCNTs, Glass Fiber, Mechanical Properties, Thermal Properties.

How to Cite this Article?

Geeri, S., and Kolakoti, A. (2019). Some Studies of Mechanical and Thermal Behaviour of CNT based E-Glass Fibre Composites. i-manager’s Journal on Mechanical Engineering, 9(4), 18-28. https://doi.org/10.26634/jme.9.4.16441

References

[1]. Ago, H., Petritsch, K., Shaffer, M. S., Windle, A. H., & Friend, R. H. (1999). Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Advanced Materials, 11(15), 1281-1285. https://doi.org/ 10.1002/(SICI)1521-4095(199910)11:15%3C1281::AID-ADMA1281% 3E3.0.CO;2-6
[2]. Andrews, R., & Weisenberger, M. C. (2004). Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science, 8(1), 31-37. https://doi.org/ 10.1016/j.cossms.2003.10.006
[3]. Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C. (2001). Logic circuits with carbon nanotube transistors. Science, 294(5545), 1317-1320. https://doi.org/10.1126/ science.106582
[4]. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., ... & Jaschinski, O. (1999). Carbon nanotube actuators. Science, 284(5418), 1340- 1344. https://doi.org/10.1126/science.284.5418.1340
[5]. Chen, X., Wang, J., Lin, M., Zhong, W., Feng, T., Chen, X., ... & Xue, F. (2008). Mechanical and thermal properties of epoxy nanocomposites reinforced with aminofunctionalized multi-walled carbon nanotubes. Materials Science and Engineering: A, 492(1-2), 236-242. https://doi.org/10.1016/j.msea.2008.04.044
[6]. Coleman, J. N., Khan, U., Blau, W. J., & Gun'ko, Y. K. (2006). Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624-1652. https://doi.org/10.1016/ j.carbon.2006.02.038
[7]. Endo, M., Strano, M. S., & Ajayan, P. M. (2007). Potential Applications of Carbon Nanotubes. In Jorio A., Dresselhaus G., Dresselhaus M. S. (Eds). Carbon Nanotubes. Topics in Applied Physics, Berlin, Heidelberg: Springer. https://doi.org/ 10.1007/978-3-540-72865-8_2
[8]. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. https://doi.org/ 10.1038/354056a0
[9]. Kasumov, A. Y., Deblock, R., Kociak, M., Reulet, B., Bouchiat, H., Khodos, I. I., ... & Burghard, M. (1999). Supercurrents through single-walled carbon nanotubes. Science, 284(5419), 1508-1511. https://doi.org/10.1126/ science.284.5419.1508
[10]. Mina, M. F., Beg, M. D., Islam, M. R., Nizam, A. K. A. A., & Younus, R. M. (2013, January). Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes. In Proceedings of World Academy of Science, Engineering and Technology (No. 73, p. 1019). https://doi.org/10.5281/zenodo.1081613
[11]. Ruan, S. L., Gao, P., Yang, X. G., & Yu, T. X. (2003). Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer, 44(19), 5643-5654. https://doi.org/10.1016/ S0032-3861(03)00628-1
[12]. Satish, G., Prasad, V. V. S., & Ramji, K. (2017a). Impact of carbon nanotubes on polymer nano composites. International Journal of Advanced Research in Basic Engineering Sciences and Technology, 3(6), 46-60.
[13]. Satish, G., Prasad, V. V. S., & Ramji, K. (2017b). Manufacturing and characterization of CNT based polymer composites. Mathematical Models in Engineering, 3(2), 89-97 https://doi.org/10.21595/ mme.2017.19121
[14]. Satish, G., Prasad, V. V. S., & Ramji, K. (2018a). Effect on Mechanical Properties of Carbon Nanotube Based Composite. Materials Today: Proceedings, 5(2), 7725- 7734 https://doi.org/10.1016/j.matpr.2017.11.449
[15]. Satish, G., Prasad, S. S., & Prasad, V. V. S. (2018b). Experimental Studies on Mechanical Properties of Polymer Based Composites. i-manager's Journal on Mechanical Engineering, 8(4), 1-7. https://doi.org/10.26634/ jme.8.4.14102
[16]. So, H. H., Cho, J. W., & Sahoo, N. G. (2007). Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon-nanotubes nanocomposites. European Polymer Journal, 43(9), 3750- 3756. https://doi.org/10.1016/j.eurpolymj.2007.06.025
[17]. Xie, X. L., Mai, Y. W., & Zhou, X. P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science and Engineering: R: Reports, 49(4), 89-112. https://doi.org/10.1016/j.mser.2005.04.002
[18]. Zhou, Y. X., Wu, P. X., Cheng, Z. Y., Ingram, J., & Jeelani, S. (2008). Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. Express Polymer Letters, 2(1), 40-48. https://doi.org/10.3144/expresspolymlett.2008.6
[19]. Zhu, B. K., Xie, S. H., Xu, Z. K., & Xu, Y. Y. (2006). Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Composites Science and Technology, 66 (3-4), 548-554. https://doi.org/10.1016/j.compscitech.2005.05.038
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.