References
[1]. Campbell, L. C., (1970). Temperature measurement in industry. Students' Quarterly Journal, 41(162), 201-206. https://doi.org/10.1049/sqj.1970.0086
[2]. Huang, Y. J., Tzeng, T. H., Lin, T. W., Huang, C. W., Yen, P. W., Kuo, P. H., Lin , C. T., & Lu, S. S. (2014). A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications. IEEE Journal of Solid-State Circuits, 49(4), 851-866. https://doi.org/10.1109/JSSC.2013.2297392
[3]. Kashmiri, S. M., Pertijs, M. A., & Makinwa, K. A. (2010). A thermal-diffusivity-based frequency reference in standard CMOS with an absolute in accuracy of ±0.1% o o from−55 C to 125 C. IEEE Journal of Solid-State Circuits, 45 (12), 2510-2520. https://doi.org/10.1109/JSSC.2010.2076343
[4]. Kashmiri, S. M., Xia, S., & Makinwa, K. A. (2009). A temperature-to-digital converter based on an optimized electrothermal filter. IEEE Journal of Solid-State Circuits, 44(7), 2026-2035. https://doi.org/10.1109/JSSC. 2009.2020248
[5]. Lee, H. Y., Hsu, C. M., & Luo, C. H. (2006). CMOS thermal sensing system with simplified circuits and high accuracy for biomedical application. In 2006 IEEE International Symposium on Circuits and Systems (ISCAS), Island of Kos, Greece, (pp. 4). https://doi.org/10.1109/ ISCAS.2006.1693596
[6]. Liu, J., Li, Y., & Zhao, H. (2010, June). A temperature measurement system based on PT100. In 2010 International Conference on Electrical and Control Engineering (pp. 296-298). IEEE. https://doi.org/ 10.1109/iCECE.2010.79
[7]. Makinwa, K. A. A., & Witte, J. F. (2005). A temperature sensor based on a thermal oscillator. IEEE Sensors, Irvine, CA, (pp. 1-4). https://doi.org/10.1109/ICSENS. 2005.1597908
[8]. Maxim (2015). MAX31865: RTD-to-Digital Converter. Maxim Integrated Products, Inc. Retrieved from https:// datasheets.maximintegrated.com/en/ds/MAX31865.pdf
[9]. Quan, R., Sonmez, U., Sebastiano, F., & Makinwa, K. A. (2015, February). 27.8 A 4600 μm 2 1.5°C (3σ) 0.9 kS/s thermal-diffusivity temperature sensor with VCO-based readout. In 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (pp. 1-3). IEEE. https://doi.org/10.1109/ISSCC.2015.7063139
[10]. Salem, S. B., Fakhfakh, M., Masmoudi, D. S., Loulou, M., Loumeau, P., & Masmoudi, N. (2006). A high performances CMOS CCII and high frequency applications. Analog Integrated Circuits and Signal Processing, 49(1), 71-78. https://doi.org/ 10.1007/s10470- 006-8694-4
[11]. Sönmez, U., Sebastiano, F., & Makinwa, K. A. (2016). 11.4 1650μm2 thermal-diffusivity sensors with inaccuracies down to ±0.75° C in 40nm CMOS. In 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp.206-207). IEEE. https://doi.org/10.1109/ISSCC.2016.7417979
[12]. Sveda, M., Benes, P., Vrba, R., & Zezulka, F. (2005). Introduction to industrial sensor networking. Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems, (pp. 10-24). https://doi.org/10.1201/978020 3489635.ch10.
[13]. Van-Vroonhoven, C. P., & Makinwa, K. A. (2011, September). Thermal diffusivity sensing: A new temperature sensing paradigm. In 2011 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-6). IEEE. https://doi.org/10.1109/CICC.2011.6055368
[14]. Zhu, W., Liu, J., Yang, H., & Yan, C. (2015). Design of high precision temperature measurement system based on Labview. International Journal of Advanced Computer Science and Applications, 6(6), 153-155. https://doi.org/ 10.14569/IJACSA.2015.060621