Evaluating wiring Configurations for RTD Sensor in Temperature Measurement

Anjali Rai*, Deepak Yadav**
*Department of Electronics Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India.
**Directorate of Flight Instrumentation, Research Centre Imarat, Hyderabad, Telangana, India.
Periodicity:September - November'2019
DOI : https://doi.org/10.26634/jele.10.1.16422

Abstract

This article compares the accuracy achieved by the various Resistance Temperature Detector (RTD) configurations using the MAX31865 device. This design offers an interface for PT100 RTD using MAX31865 RTD to digital converter. The RTD is connected to the anti-aliasing filter and the filter output is converted into a digital signal using the MAX31865 device. The final temperature readout is monitored on the computer for validation. The proposed temperature sensor interfacing can be utilized in multi-channel temperature measurement in the telemetry systems. RTD sensor configurations with 2, 3 and 4 wires are evaluated and accurate results are obtained in 4 wire configuration. Furthermore, in this sensor interfacing Serial Peripheral Interface (SPI) output requires only one micro-controller unit, which reduces the circuit complexity and power requirement to a great extent.

Keywords

PT100 RTD, MAX31865, Temperature Measurement, RTD Configuration, Temperature Sensor.

How to Cite this Article?

Rai, A., & Yadav, D. (2019). Evaluating wiring Configurations for RTD Sensor in Temperature Measurement. i-manager's Journal on Electronics Engineering, 10(1), 1-7. https://doi.org/10.26634/jele.10.1.16422

References

[1]. Campbell, L. C., (1970). Temperature measurement in industry. Students' Quarterly Journal, 41(162), 201-206. https://doi.org/10.1049/sqj.1970.0086
[2]. Huang, Y. J., Tzeng, T. H., Lin, T. W., Huang, C. W., Yen, P. W., Kuo, P. H., Lin , C. T., & Lu, S. S. (2014). A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications. IEEE Journal of Solid-State Circuits, 49(4), 851-866. https://doi.org/10.1109/JSSC.2013.2297392
[3]. Kashmiri, S. M., Pertijs, M. A., & Makinwa, K. A. (2010). A thermal-diffusivity-based frequency reference in standard CMOS with an absolute in accuracy of ±0.1% o o from−55 C to 125 C. IEEE Journal of Solid-State Circuits, 45 (12), 2510-2520. https://doi.org/10.1109/JSSC.2010.2076343
[4]. Kashmiri, S. M., Xia, S., & Makinwa, K. A. (2009). A temperature-to-digital converter based on an optimized electrothermal filter. IEEE Journal of Solid-State Circuits, 44(7), 2026-2035. https://doi.org/10.1109/JSSC. 2009.2020248
[5]. Lee, H. Y., Hsu, C. M., & Luo, C. H. (2006). CMOS thermal sensing system with simplified circuits and high accuracy for biomedical application. In 2006 IEEE International Symposium on Circuits and Systems (ISCAS), Island of Kos, Greece, (pp. 4). https://doi.org/10.1109/ ISCAS.2006.1693596
[6]. Liu, J., Li, Y., & Zhao, H. (2010, June). A temperature measurement system based on PT100. In 2010 International Conference on Electrical and Control Engineering (pp. 296-298). IEEE. https://doi.org/ 10.1109/iCECE.2010.79
[7]. Makinwa, K. A. A., & Witte, J. F. (2005). A temperature sensor based on a thermal oscillator. IEEE Sensors, Irvine, CA, (pp. 1-4). https://doi.org/10.1109/ICSENS. 2005.1597908
[8]. Maxim (2015). MAX31865: RTD-to-Digital Converter. Maxim Integrated Products, Inc. Retrieved from https:// datasheets.maximintegrated.com/en/ds/MAX31865.pdf
[9]. Quan, R., Sonmez, U., Sebastiano, F., & Makinwa, K. A. (2015, February). 27.8 A 4600 μm 2 1.5°C (3σ) 0.9 kS/s thermal-diffusivity temperature sensor with VCO-based readout. In 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (pp. 1-3). IEEE. https://doi.org/10.1109/ISSCC.2015.7063139
[10]. Salem, S. B., Fakhfakh, M., Masmoudi, D. S., Loulou, M., Loumeau, P., & Masmoudi, N. (2006). A high performances CMOS CCII and high frequency applications. Analog Integrated Circuits and Signal Processing, 49(1), 71-78. https://doi.org/ 10.1007/s10470- 006-8694-4
[11]. Sönmez, U., Sebastiano, F., & Makinwa, K. A. (2016). 11.4 1650μm2 thermal-diffusivity sensors with inaccuracies down to ±0.75° C in 40nm CMOS. In 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp.206-207). IEEE. https://doi.org/10.1109/ISSCC.2016.7417979
[12]. Sveda, M., Benes, P., Vrba, R., & Zezulka, F. (2005). Introduction to industrial sensor networking. Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems, (pp. 10-24). https://doi.org/10.1201/978020 3489635.ch10.
[13]. Van-Vroonhoven, C. P., & Makinwa, K. A. (2011, September). Thermal diffusivity sensing: A new temperature sensing paradigm. In 2011 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-6). IEEE. https://doi.org/10.1109/CICC.2011.6055368
[14]. Zhu, W., Liu, J., Yang, H., & Yan, C. (2015). Design of high precision temperature measurement system based on Labview. International Journal of Advanced Computer Science and Applications, 6(6), 153-155. https://doi.org/ 10.14569/IJACSA.2015.060621
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.