Maximum Power Point Tracking in Solar PV systems using Artificial Neural Networks

Jyotsana Pandey*
* Department of Electrical Engineering, Raipur Institute of Technology, Raipur, Chhattisgarh, India.
Periodicity:November - January'2019
DOI : https://doi.org/10.26634/jps.6.4.16409

Abstract

Maximum power point tracking (MPPT) is critical in the design and use of solar PV cells. However, attaining MPPT is often challenging due to the random fluctuations in solar irradiation. Off late Artificial Neural Networks (ANN) are being used for maximum power point tracking of solar PV cells. In the proposed work, the Levenberg-Marqardt (LM) algorithm has been used to train a neural network with training features. Subsequently, the neural network is tested and an accuracy of 98.84% has been achieved. The high accuracy can be attributed to the structuring of the training data and the effectiveness of the Levenberg Marqardt back-propagation algorithm which is both fast and stable. The performance of the system has been evaluated in terms of the number of epochs for training, the mean absolute percentage error, accuracy and regression.

Keywords

Maximum Power Point Tracking (MPPT), Solar Irradiation, Artificial Neural Networks, Levenberg Marquardt Algorithm, Mean Absolute Percentage Error (MAPE).

How to Cite this Article?

Pandey, J. (2019). Maximum Power Point Tracking in Solar PV systems using Artificial Neural Networks i-manager’s Journal on Power Systems Engineering, 6(4), 45-52. https://doi.org/10.26634/jps.6.4.16409

References

[1]. Algarín, R. C., Hernández, S. D., & Leal, D. R. (2018). A low-cost maximum power point tracking system based on neural network inverse model controller. Electronics, 7(1), 4. https://doi.org/10.3390/electronics 7010004
[2]. Armghan, H., Ahmad, I., Armghan, A., Khan, S., & Arsalan, M. (2018). Backstepping based non-linear control for maximum power point tracking in photovoltaic system. Solar Energy, 159, 134-141. https://doi.org/10. 1016/j.solener.2017.10.062
[3]. Asrari, A., Wu, T. X., & Ramos, B. (2016). A hybrid algorithm for short-term solar power prediction-Sunshine state case study. IEEE Transactions on Sustainable Energy, 8(2), 582-591. https://doi.org/10.1109/TSTE.2016. 2613962
[4]. Cammarano, A., Petrioli, C., & Spenza, D. (2012, October). Pro-Energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks. In 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012) (pp. 75- 83). IEEE. https://doi.org/10.1109/MASS.2012.6502504
[5]. Deng, W., Liu, F., Jin, H., Li, B., & Li, D. (2014). Harnessing renewable energy in cloud datacenters: Opportunities and challenges. IEEE Network, 28(1), 48-55. https://doi.org/10.1109/MNET.2014.6724106
[6]. Huang, R., Huang, T., Gadh, R., & Li, N. (2012, November). Solar generation prediction using the ARMA model in a laboratory-level micro-grid. In 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm) (pp. 528-533). IEEE.
[7]. Kosmopoulos, P. G., Kazadzis, S., Lagouvardos, K., Kotroni, V., & Bais, A. (2015). Solar energy prediction and verification using operational model forecasts and ground-based solar measurements. Energy, 93, 1918- 1930. https://doi.org/10.1016/j.energy.2015.10.054
[8]. Ma, T., Yang, H., & Lu, L. (2014). Solar photovoltaic system modeling and per formance prediction. Renewable and Sustainable Energy Reviews, 36, 304- 315. https://doi.org/10.1016/j.rser.2014.04.057
[9]. Mathiesen, P., Collier, C., & Kleissl, J. (2013). A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Solar Energy, 92, 47-61. https://doi.org/10.1016/j.solener.2013. 02.018
[10]. Meenal, R., & Selvakumar, A. I. (2018). Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renewable Energy, 121, 324-343. https://doi.org/10. 1016/j.renene.2017.12.005
[11]. Qazi, A., Fayaz, H., Wadi, A., Raj, R. G., Rahim, N. A., & Khan, W. A. (2015). The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. Journal of Cleaner Production, 104, 1-12. https://doi.org/10.1016/j.jclepro. 2015.04.041
[12]. Salcedo-Sanz, S., Casanova-Mateo, C., Muñoz- Marí, J., & Camps-Valls, G. (2014). Prediction of daily global solar irradiation using temporal Gaussian processes. IEEE Geoscience and Remote Sensing Letters, 11(11), 1936-1940. https://doi.org/10.1109/LGRS.2014. 2314315
[13]. Saoud, L. S., Rahmoune, F., Tourtchine, V., & Baddari, K. (2017). Fully complex valued wavelet network for forecasting the global solar irradiation. Neural Processing Letters, 45(2), 475-505. https://doi.org/10.1007/s11063- 016-9537-7
[14]. Tiwari, R., Krishnamurthy, K., Neelakandan, R., Padmanaban, S., & Wheeler, P. (2018). Neural network based maximum power point tracking control with quadratic boost converter for PMSG-wind energy conversion system. Electronics, 7(2), 20. https://doi.org/ 10.3390/electronics7020020
[15]. Torabi, M., Mosavi, A., Ozturk, P., Varkonyi-Koczy, A., & Istvan, V. (2018, September). A hybrid machine learning approach for daily prediction of solar radiation. In International Conference on Global Research and Education (pp. 266-274). Springer, Cham. https://doi.org/10.1007/978-3-319-99834-3_35
[16]. Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569-582. https://doi.org/ 10.1016/j.renene.2016.12.095
[17]. Yaïci, W., & Entchev, E. (2014). Performance prediction of a solar thermal energy system using artificial neural networks. Applied Thermal Engineering, 73(1), 1348-1359. https://doi.org/10.1016/j.applthermaleng. 2014.07.040
[18]. Yaïci, W., & Entchev, E. (2016). Adaptive neuro-fuzzy inference system modelling for performance prediction of solar thermal energy system. Renewable Energy, 86, 302-315. https://doi.org/10.1016/j.renene.2015.08.028
[19]. Yang, D., Jirutitijaroen, P., & Walsh, W. M. (2012). Hourly solar irradiance time series forecasting using cloud cover index. Solar Energy, 86(12), 3531-3543. https://doi.org/ 10.1016/j.solener.2012.07.029
[20]. Zeng, J., & Qiao, W. (2013). Short-term solar power prediction using a support vector machine. Renewable Energy, 52, 118-127. https://doi.org/10.1016/j.renene. 2012.10.009
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.