References
[1]. Algarín, R. C., Hernández, S. D., & Leal, D. R. (2018). A low-cost maximum power point tracking system based on neural network inverse model controller. Electronics, 7(1), 4. https://doi.org/10.3390/electronics 7010004
[2]. Armghan, H., Ahmad, I., Armghan, A., Khan, S., & Arsalan, M. (2018). Backstepping based non-linear control for maximum power point tracking in photovoltaic system. Solar Energy, 159, 134-141. https://doi.org/10. 1016/j.solener.2017.10.062
[3]. Asrari, A., Wu, T. X., & Ramos, B. (2016). A hybrid algorithm for short-term solar power prediction-Sunshine state case study. IEEE Transactions on Sustainable Energy, 8(2), 582-591. https://doi.org/10.1109/TSTE.2016. 2613962
[4]. Cammarano, A., Petrioli, C., & Spenza, D. (2012, October). Pro-Energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks. In 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012) (pp. 75- 83). IEEE. https://doi.org/10.1109/MASS.2012.6502504
[5]. Deng, W., Liu, F., Jin, H., Li, B., & Li, D. (2014). Harnessing renewable energy in cloud datacenters: Opportunities and challenges. IEEE Network, 28(1), 48-55. https://doi.org/10.1109/MNET.2014.6724106
[6]. Huang, R., Huang, T., Gadh, R., & Li, N. (2012, November). Solar generation prediction using the ARMA model in a laboratory-level micro-grid. In 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm) (pp. 528-533). IEEE.
[7]. Kosmopoulos, P. G., Kazadzis, S., Lagouvardos, K., Kotroni, V., & Bais, A. (2015). Solar energy prediction and verification using operational model forecasts and ground-based solar measurements. Energy, 93, 1918- 1930. https://doi.org/10.1016/j.energy.2015.10.054
[8]. Ma, T., Yang, H., & Lu, L. (2014). Solar photovoltaic system modeling and per formance prediction. Renewable and Sustainable Energy Reviews, 36, 304- 315. https://doi.org/10.1016/j.rser.2014.04.057
[9]. Mathiesen, P., Collier, C., & Kleissl, J. (2013). A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Solar Energy, 92, 47-61. https://doi.org/10.1016/j.solener.2013. 02.018
[10]. Meenal, R., & Selvakumar, A. I. (2018). Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renewable Energy, 121, 324-343. https://doi.org/10. 1016/j.renene.2017.12.005
[11]. Qazi, A., Fayaz, H., Wadi, A., Raj, R. G., Rahim, N. A., & Khan, W. A. (2015). The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. Journal of Cleaner Production, 104, 1-12. https://doi.org/10.1016/j.jclepro. 2015.04.041
[12]. Salcedo-Sanz, S., Casanova-Mateo, C., Muñoz- Marí, J., & Camps-Valls, G. (2014). Prediction of daily global solar irradiation using temporal Gaussian processes. IEEE Geoscience and Remote Sensing Letters, 11(11), 1936-1940. https://doi.org/10.1109/LGRS.2014. 2314315
[13]. Saoud, L. S., Rahmoune, F., Tourtchine, V., & Baddari, K. (2017). Fully complex valued wavelet network for forecasting the global solar irradiation. Neural Processing Letters, 45(2), 475-505. https://doi.org/10.1007/s11063- 016-9537-7
[14]. Tiwari, R., Krishnamurthy, K., Neelakandan, R., Padmanaban, S., & Wheeler, P. (2018). Neural network based maximum power point tracking control with quadratic boost converter for PMSG-wind energy conversion system. Electronics, 7(2), 20. https://doi.org/ 10.3390/electronics7020020
[15]. Torabi, M., Mosavi, A., Ozturk, P., Varkonyi-Koczy, A., & Istvan, V. (2018, September). A hybrid machine learning approach for daily prediction of solar radiation. In International Conference on Global Research and Education (pp. 266-274). Springer, Cham. https://doi.org/10.1007/978-3-319-99834-3_35
[16]. Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569-582. https://doi.org/ 10.1016/j.renene.2016.12.095
[17]. Yaïci, W., & Entchev, E. (2014). Performance prediction of a solar thermal energy system using artificial neural networks. Applied Thermal Engineering, 73(1), 1348-1359. https://doi.org/10.1016/j.applthermaleng. 2014.07.040
[18]. Yaïci, W., & Entchev, E. (2016). Adaptive neuro-fuzzy inference system modelling for performance prediction of solar thermal energy system. Renewable Energy, 86, 302-315. https://doi.org/10.1016/j.renene.2015.08.028
[19]. Yang, D., Jirutitijaroen, P., & Walsh, W. M. (2012). Hourly solar irradiance time series forecasting using cloud cover index. Solar Energy, 86(12), 3531-3543. https://doi.org/ 10.1016/j.solener.2012.07.029
[20]. Zeng, J., & Qiao, W. (2013). Short-term solar power prediction using a support vector machine. Renewable Energy, 52, 118-127. https://doi.org/10.1016/j.renene. 2012.10.009