References
[1]. Asadzadeh, L. (2016). A parallel Artificial Bee Colony algorithm for the job shop scheduling problem with a dynamic migration strategy. Computers & Industrial Engineering, 102, 359-367. https://doi.org/10.1016/ j.cie.2016.06.025
[2]. Balasubramanian, H., Fowler, J., Keha, A., & Pfund, M. (2009). Scheduling interfering job sets on parallel machines. European Journal of Operational Research, 199(1), 55-67. https://doi.org/10.1016/j.ejor.2008.10.038
[3]. Baykasoğlu, A., Hamzadayi, A., & Köse, S. Y. (2014). Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases. Information Sciences, 276, 204-218. https://doi.org/10.1016/ j.ins.2014.02.056
[4]. Ghannadpour, S. F., Noori, S., & Tavakkoli- Moghaddam, R. (2013). Multiobjective dynamic vehicle routing problem with fuzzy travel times and customers' satisfaction in supply chain management. IEEE Transactions on Engineering Management, 60(4), 777- 790. https://doi.org/10.1109/TEM.2013.2257794
[5]. Horng, S. C., Lin, S. S., & Yang, F. Y. (2012). Evolutionary algorithm for stochastic job shop scheduling with random processing time. Expert Systems with Applications, 39(3), 3603-3610. https://doi.org/10.1016/j.eswa.2011.09.050
[6]. Jain, N., Singh, A. R., & Choudhary, A. K. (2016, December). Integrated methodology for supplier selection in supply chain management. In 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 807-811). IEEE. https://doi.org/ 10.1109/IEEM.2016.7797988
[7]. Jamili, A., Shafia, M. A., & Tavakkoli-Moghaddam, R. (2011). A hybrid algorithm based on Particle Swarm optimization and simulated annealing for a periodic job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 54(1-4), 309-322. https://doi.org/10.1007/s00170-010-2932-8
[8]. Liu, L. L., Hu, R. S., Hu, X. P., Zhao, G. P., & Wang, S. (2015). A hybrid PSO-GA algorithm for job shop scheduling in machine tool production. International Journal of Production Research, 53(19), 5755-5781. https://doi.org/ 10.1080/00207543.2014.994714
[9]. Low, C., Ji, M., Hsu, C. J., & Su, C. T. (2010). Minimizing the makespan in a single machine scheduling problems with flexible and periodic maintenance. Applied Mathematical Modelling, 34(2), 334-342. https://doi.org/ 10.1016/j.apm.2009.04.014
[10]. Piroozfard, H., Wong, K. Y., & Hassan, A. (2016). A hybrid genetic algorithm with a knowledge-based operator for solving the job shop scheduling problems. Journal of Optimization, 2016, 1-13. http://dx.doi.org/ 10.1155/2016/7319036
[11]. Raut, R. D., Narkhede, B., & Gardas, B. B. (2017). To identify the critical success factors of sustainable supply chain management practices in the context of oil and gas industries: ISM approach. Renewable and Sustainable Energy Reviews, 68, 33-47. https://doi.org/10.1016/ j.rser.2016.09.067
[12]. Sanjeevikumar, J., & Sudhakaran, M. (2016). Application of integrated GA-PSO-TS algorithm for solving hydro thermal scheduling problem with prohibited operating zones. International Journal of Applied Engineering Research, 11(6), 3842-3847.
[13]. Song, W., Ming, X., & Liu, H. C. (2017). Identifying critical risk factors of sustainable supply chain management: A rough strength-relation analysis method. Journal of Cleaner Production, 143, 100-115. https://doi.org/10.1016/j.jclepro.2016.12.145
[14]. Toader, F. A. (2015). A hybrid algorithm for job shop scheduling problem. Studies in Informatics and Control, 24(2), 171-180.
[15]. Wang, Y. F., Zhang, Y. F., & Fuh, J. Y. H. (2010, June). A PSO-based multi-objective optimization approach to the integration of process planning and scheduling. In IEEE ICCA 2010 (pp. 614-619). IEEE. https://doi.org/10.1109/ ICCA.2010.5524365
[16]. Wang, Y., Zhu, L., Wang, J., & Qiu, J. (2015, January). An improved social spider algorithm for the Flexible Job- Shop Scheduling Problem. In 2015 International Conference on Estimation, Detection and Information Fusion (ICEDIF) (pp. 157-162). IEEE. https://doi.org/10.1109/ ICEDIF.2015.7280181
[17]. Wu, T., Huang, S., Blackhurst, J., Zhang, X., & Wang, S. (2012). Supply chain risk management: An agent-based simulation to study the impact of retail stockouts. IEEE Transactions on Engineering Management, 60(4), 676- 686. https://doi.org/10.1109/TEM.2012.2190986
[18]. Xing, L. N., Chen, Y. W., Wang, P., Zhao, Q. S., & Xiong, J. (2010). A knowledge-based ant colony optimization for flexible job shop scheduling problems. Applied Soft Computing, 10(3), 888-896. https://doi.org/10.1016/ j.asoc.2009.10.006
[19]. Zhang, R. (2011). An artificial bee colony algorithm based on problem data properties for scheduling job shops. Procedia Engineering, 23, 131-136. https://doi.org/ 10.1016/j.proeng.2011.11.2478
[20]. Zhang, R., & Wu, C. (2011). A hybrid differential evolution and tree search algorithm for the job shop scheduling problem. Mathematical Problems in Engineering, 2011, 1- 21. http://dx.doi.org/10.1155/2011/390593