A Review on Electrochemical Sensors based on Carbon Nanotubes

Roberto Marani*, Anna Gina Perri**
*Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council, Italy.
**Department of Electrical and Information Engineering, Polytechnic University of Bari, Italy.
Periodicity:September - November'2019
DOI : https://doi.org/10.26634/jele.10.1.16358

Abstract

The discovery of Carbon Nanotube (CNT) had attracted many researchers to study their applications in the nanotechnology field including those in the biomedical field, due to the remarkable physical, chemical, electrical and optical characteristic proprieties of CNTs, which make them one of the best suited for biosensors. The CNTs based electrochemical biosensors are used for diagnostic as well as therapeutic applications, especially in the field of oncology. In this paper, the authors present a review on electrochemical sensors based on CNTs, with particular reference to their applications in biomedical field, highlighting the state of the art and the necessary developments to solve the current issues related to this technology.

Keywords

Nanotechnology, Carbon Nanotubes, Biomedical Applications, Biosensors, Electrochemical Sensors.

How to Cite this Article?

Marani, R., & Perri, A. G. (2019). A Review on Electrochemical Sensors based on Carbon Nanotubes. i-manager's Journal on Electronics Engineering, 10(1), 29-37. https://doi.org/10.26634/jele.10.1.16358

References

[1]. Baj-Rossi, C., Micheli, G. D., & Carrara, S. (2012). Electrochemical detection of anti-breast-cancer agents in human serum by cytochrome P450-coated carbon nanotubes. Sensors, 12(5), 6520-6537. https://doi.org/ 10.3390/s120506520
[2]. Cai, C., & Chen, J. (2004). Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry, 332(1), 75-83. https://doi.org/ 10.1016/j.ab.2004.05.057
[3]. Chen, Z., Tabakman, S. M., Goodwin, A. P., Kattah, M. G., Daranciang, D., Wang, X., Zhang, G., Li, X., Liu, Z., Utz, P. J., Jiang, K., Fan, S., & Dai, H. (2008). Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnology, 26(11), 1285-1292. https://doi.org/ 10.1038/nbt.1501
[4]. Fei, S., Chen, J., Yao, S., Deng, G., He, D., & Kuang, Y. (2005). Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Analytical Biochemistry, 339(1), 29-35. https://doi.org/10.1016/j.ab.2005.01.002
[5]. Feng, Q. M., Pan, J. B., Zhang, H. R., Xu, J. J., & Chen, H. Y. (2014). Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chemical Communications, 50(75), 10949-10951. https://doi.org/10.1039/C4CC03102D
[6]. Fu, Q., Lu, C., & Liu, J. (2002). Selective coating of single wall carbon nanotubes with thin SiO2 layer. Nano Letters, 2(4), 329-332. https://doi.org/10.1021/nl025513d
[7]. Gelao, G., Marani, R., & Perri, A. G. (2019). A formula to determine energy band gap in semiconducting carbon nanotubes. ECS Journal of Solid State Science and Technology, 8(2), M19-M21. https://doi.org/ 10.1149/2.0201902jss
[8]. Gelao, G., Marani, R., Diana, R., & Perri, A. G. (2010). A semiempirical SPICE model for n-type conventional CNTFETs. IEEE Transactions on Nanotechnology, 10(3), 506-512. https://doi.org/10.1109/TNANO.2010.2049499
[9]. Hafaiedh, I., Ameur, S., & Abdelghani, A. (2012). Impedance spectroscopy of supported multiwalled carbon nanotubes for immunosensor applications. Journal of Nanomedicine and Nanotechnology, 6(2), 1- 5. https://doi.org/10.4172/2157-7439.1000275
[10]. Hrapovic, S., Liu, Y., Male, K. B., & Luong, J. H. (2004). Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry, 76(4), 1083-1088. https://doi.org/10.1021/ ac035143t
[11]. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de La Chapelle, M. L., Lefrant,. S., Deniard, P., Lee, R., & Fischer, J. E. (1997). Large-scale production of singlewalled carbon nanotubes by the electric-arc technique. Nature, 388, 756-758. https://doi.org/10.1038/41972
[12]. Kang, Y. K., Lee, O. S., Deria, P., Kim, S. H., Park, T. H., Bonnell, D. A., Saven, J. G., & Therien, M. J. (2009). Helical wrapping of single-walled carbon nanotubes by water soluble poly (p-phenyleneethynylene). Nano Letters, 9(4), 1414-1418. https://doi.org/10.1021/nl8032334
[13]. Lin, Y., Lu, F., Tu, Y., & Ren, Z. (2004). Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 4(2), 191-195. https://doi.org/ 10.1021/nl0347233
[14]. Liu, F. L., Xiao, P., Fang, H. L., Dai, H. F., Qiao, L., & Zhang, Y. H. (2011). Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Physica E: Low-dimensional Systems and Nanostructures, 44(2), 367-372. https://doi. org/10.1016/j.physe.2011.08.033
[15]. Liu, Y. T., Zhao, W., Huang, Z. Y., Gao, Y. F., Xie, X. M., Wang, X. H., & Ye, X. Y. (2006). Noncovalent surface modification of carbon nanotubes for solubility in organic solvents. Carbon, 44(8), 1613-1616. https://doi.org/ 10.1016/j.carbon.2006.02.034
[16]. Marani, R., & Perri, A. G. (2011). A compact, semi-empirical model of carbon nanotube field effect transistors oriented to simulation software. Current Nanoscience, 7(2), 245-253. https://doi.org/10.2174/ 157341311794653613
[17]. Marani, R., & Perri, A. G. (2012). A DC model of carbon nanotube field effect transistor for CAD applications. International Journal of Electronics, 99(3), 437-444. https://doi.org/10.1080/00207217.2011.629223
[18]. Marani, R., & Perri, A. G. (2016). Analysis of CNTFETs operating in subthreshold region for low power digital applications. ECS Journal of Solid State Science and Technology, 5(2), M1-M4. https://doi.org/10.1149/ 2.0151602jss
[19]. Marani, R., & Perri, A. G. (2017). A simulation study of basic digital circuits using molecular diodes. i-manager's Journal on Electronics Engineering, 7(3), 7-16. https://doi.org/10.26634/jele.7.3.13559
[20]. Marani, R., Gelao, G., & Perri, A. G. (2012). Comparison of ABM SPICE library with verilog-A for compact CNTFET model implementation. Current Nanoscience, 8(4), 556-565. https://doi.org/10.2174/ 157341312801784230
[21]. Marani, R., Gelao, G., & Perri, A. G. (2013). Modelling of carbon nanotube field effect transistors oriented to SPICE software for A/D circuit design. Microelectronics Journal, 44(1), 33-38. https://doi.org/10.1016/j.mejo. 2011.07.012
[22]. Munge, B. S., Fisher, J., Millord, L. N., Krause, C. E., Dowd, R. S., & Rusling, J. F. (2010). Sensitive electrochemical immunosensor for matrix metallo proteinase-3 based on single-wall carbon nanotubes. Analyst, 135(6), 1345-1350. https://doi.org/10.1039/ C0AN00028K.
[23]. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., & Whitesides, G. M. (2001). A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir, 17(18), 5605-5620. https://doi.org/10.1021/la010384m
[24]. Ovádeková, R., Jantová, S., Letašiová, S., Štepánek, I., & Labuda, J. (2006). Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells. Analytical and Bioanalytical Chemistry, 386(7-8), 2055-2062. https://doi.org/10.1007/s00216-006-0830-6
[25]. Pan, J., Li, F., & Choi, J. H. (2017). Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. Journal of Materials Chemistry B, 5(32), 6511- 6522. https://doi.org/10.1039/C7TB00748E.
[26]. Patolsky, F., Weizmann, Y., & Willner, I. (2004). Long‐range electrical contacting of redox enzymes by SWCNT connectors. Angewandte Chemie International Edition, 43(16), 2113-2117. https://doi.org/10.1002/ anie.200353275
[27]. Perri, A. G., & Marani, R. (2017). CNTFET Electronics: Design Principles. Italy: Progedit (pp. 1-220).
[28]. Perri, A.G. (2011). Advanced Electronic Devices, Italy: Progedit (pp. 1-344).
[29]. Riberi, W. I., Tarditto, L. V., Zon, M. A., Arévalo, F. J., & Fernández, H. (2018). Development of an electrochemical immune sensor to determine zearalenone in maize using carbon screen printed electrodes modified with multi-walled carbon nanotubes/polyethyleneimine dispersions. Sensors and Actuators B: Chemical, 254, 1271-1277. https://doi.org/ 10.1016/j.snb.2017.07.113
[30]. Roy, S., Vedala, H., & Choi, W. (2006). Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology, 17(4), S14-S18. Retrieved from https://iopscience.iop.org/article/10.1088/0957- 4484/17/4/003
[31]. Tîlmaciu, C.-M., & Morris, M.C.(2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3, 1-59. https://doi.org/10.3389/fchem.2015.00059
[32]. Thirumalraj, B., Kubendhiran, S., Chen, S. M., & Lin, K. Y. (2017). Highly sensitive electrochemical detection of palmatine using a biocompatible multiwalled carbon nanotube/poly-l-lysine composite. Journal of Colloid and Interface Science, 498, 144-152. https://doi.org/ 10.1016/j.jcis.2017.03.045
[33]. Tsujita, Y., Maehashi, K., Matsumoto, K., Chikae, M., Takamura, Y., & Tamiya, E. (2009). Microfluidic and label-free multi-immunosensors based on carbon nanotube microelectrodes. Japanese Journal of Applied Physics, 48(6S), 06FJ02.
[34]. Vilian, A. E., Madhu, R., Chen, S. M., Veeramani, V., Sivakumar, M., Huh, Y. S., & Han, Y. K. (2015). Facile synthesis of MnO2/carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. Journal of Materials Chemistry B, 3(30), 6285-6292. https://doi.org/ 10.1039/C5TB00508F
[35]. Wang, S. G., Zhang, Q., Wang, R., Yoon, S. F., Ahn, J., Yang, D. J., Tian, J. Z., Li, J. Q., & Zhou, Q. (2003). Multiwalled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochemistry Communications, 5(9), 800-803. https://doi.org/10.1016/ j.elecom.2003.07.007
[36]. Welsher, K., Liu, Z., Daranciang, D., & Dai, H. (2008). Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Letters, 8(2), 586-590. https://doi.org/ 10.1021/nl072949q
[37]. Wu, X., Zhao, B., Wu, P., Zhang, H., & Cai, C. (2009). Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. The Journal of Physical Chemistry B, 113(40), 13365-13373. https://doi.org/10.1021/jp905632k
[38]. Xiao-Ming, M., Mi, S., Yue, L., Yin-Jin, L., Fang, L., Long-Hua, G., Bin, Q., Zhen-Yu, L., & Guo-Nan, C. (2018). Progress of visual biosensor based on gold nanoparticles. Chinese Journal of Analytical Chemistry, 46(1), 1-10. https://doi.org/10.1016/S1872-2040(17)61061-2
[39]. Yang, Z., Chen, X., Chen, C., Li, W., Zhang, H., Xu, L., & Yi, B. (2007). Noncovalent‐wrapped sidewall functionalization of multiwalled carbon nanotubes with polyimide. Polymer Composites, 28(1), 36-41. https://doi.org/10.1002/pc.20254
[40]. Zhang, J., Boghossian, A. A., Barone, P. W., Rwei, A., Kim, J. H., Lin, D., Heller, D. A., Hilmer, A. J., Nain, N., Reuel, N. F., & Strano, M. S. (2010). Single molecule detection of nitric oxide enabled by d (AT) 15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. Journal of the American Chemical Society, 133(3), 567- 581. https://doi.org/10.1021/ja1084942
[41]. Zheng, M., Jagota, A., Semke, E. D., Diner, B. A., McLean, R. S., Lustig, S. R., Richardson, R. E., & Tassi, N. G. (2003). DNA-assisted dispersion and separation of carbon nano tubes. Nature Materials, 2 (5), 338-342. https://doi.org/10.1038/nmat877
[42]. Zheng, T. T., Zhang, R., Zou, L., & Zhu, J. J. (2012). A label-free cytosensor for the enhanced electrochemical detection of cancer cells using polydopamine-coated carbon nanotubes. Analyst, 137(6), 1316-1318. https://doi.org/10.1039/C2AN16023D
[43]. Zhong, Q., Diev, V. V., Roberts, S. T., Antunez, P. D., Brutchey, R. L., Bradforth, S. E., & Thompson, M. E. (2013). Fused porphyrin–single-walled carbon nanotube hybrids: Efficient Formation and photophysical characterization. ACS Nano, 7(4), 3466-3475. https://doi.org/10.1021/ nn400362e
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.