References
[1]. Baj-Rossi, C., Micheli, G. D., & Carrara, S. (2012). Electrochemical detection of anti-breast-cancer agents in human serum by cytochrome P450-coated carbon nanotubes. Sensors, 12(5), 6520-6537. https://doi.org/ 10.3390/s120506520
[2]. Cai, C., & Chen, J. (2004). Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry, 332(1), 75-83. https://doi.org/ 10.1016/j.ab.2004.05.057
[3]. Chen, Z., Tabakman, S. M., Goodwin, A. P., Kattah, M. G., Daranciang, D., Wang, X., Zhang, G., Li, X., Liu, Z., Utz, P. J., Jiang, K., Fan, S., & Dai, H. (2008). Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnology, 26(11), 1285-1292. https://doi.org/ 10.1038/nbt.1501
[4]. Fei, S., Chen, J., Yao, S., Deng, G., He, D., & Kuang, Y. (2005). Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Analytical Biochemistry, 339(1), 29-35. https://doi.org/10.1016/j.ab.2005.01.002
[5]. Feng, Q. M., Pan, J. B., Zhang, H. R., Xu, J. J., & Chen, H. Y. (2014). Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chemical Communications, 50(75), 10949-10951. https://doi.org/10.1039/C4CC03102D
[6]. Fu, Q., Lu, C., & Liu, J. (2002). Selective coating of single wall carbon nanotubes with thin SiO2 layer. Nano Letters, 2(4), 329-332. https://doi.org/10.1021/nl025513d
[7]. Gelao, G., Marani, R., & Perri, A. G. (2019). A formula to determine energy band gap in semiconducting carbon nanotubes. ECS Journal of Solid State Science and Technology, 8(2), M19-M21. https://doi.org/ 10.1149/2.0201902jss
[8]. Gelao, G., Marani, R., Diana, R., & Perri, A. G. (2010). A semiempirical SPICE model for n-type conventional CNTFETs. IEEE Transactions on Nanotechnology, 10(3), 506-512. https://doi.org/10.1109/TNANO.2010.2049499
[9]. Hafaiedh, I., Ameur, S., & Abdelghani, A. (2012). Impedance spectroscopy of supported multiwalled carbon nanotubes for immunosensor applications. Journal of Nanomedicine and Nanotechnology, 6(2), 1- 5. https://doi.org/10.4172/2157-7439.1000275
[10]. Hrapovic, S., Liu, Y., Male, K. B., & Luong, J. H. (2004). Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry, 76(4), 1083-1088. https://doi.org/10.1021/ ac035143t
[11]. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de La Chapelle, M. L., Lefrant,. S., Deniard, P., Lee, R., & Fischer, J. E. (1997). Large-scale production of singlewalled carbon nanotubes by the electric-arc technique. Nature, 388, 756-758. https://doi.org/10.1038/41972
[12]. Kang, Y. K., Lee, O. S., Deria, P., Kim, S. H., Park, T. H., Bonnell, D. A., Saven, J. G., & Therien, M. J. (2009). Helical wrapping of single-walled carbon nanotubes by water soluble poly (p-phenyleneethynylene). Nano Letters, 9(4), 1414-1418. https://doi.org/10.1021/nl8032334
[13]. Lin, Y., Lu, F., Tu, Y., & Ren, Z. (2004). Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 4(2), 191-195. https://doi.org/ 10.1021/nl0347233
[14]. Liu, F. L., Xiao, P., Fang, H. L., Dai, H. F., Qiao, L., & Zhang, Y. H. (2011). Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Physica E: Low-dimensional Systems and Nanostructures, 44(2), 367-372. https://doi. org/10.1016/j.physe.2011.08.033
[15]. Liu, Y. T., Zhao, W., Huang, Z. Y., Gao, Y. F., Xie, X. M., Wang, X. H., & Ye, X. Y. (2006). Noncovalent surface modification of carbon nanotubes for solubility in organic solvents. Carbon, 44(8), 1613-1616. https://doi.org/ 10.1016/j.carbon.2006.02.034
[16]. Marani, R., & Perri, A. G. (2011). A compact, semi-empirical model of carbon nanotube field effect transistors oriented to simulation software. Current Nanoscience, 7(2), 245-253. https://doi.org/10.2174/ 157341311794653613
[17]. Marani, R., & Perri, A. G. (2012). A DC model of carbon nanotube field effect transistor for CAD applications. International Journal of Electronics, 99(3), 437-444. https://doi.org/10.1080/00207217.2011.629223
[18]. Marani, R., & Perri, A. G. (2016). Analysis of CNTFETs operating in subthreshold region for low power digital applications. ECS Journal of Solid State Science and Technology, 5(2), M1-M4. https://doi.org/10.1149/ 2.0151602jss
[19]. Marani, R., & Perri, A. G. (2017). A simulation study of basic digital circuits using molecular diodes. i-manager's Journal on Electronics Engineering, 7(3), 7-16. https://doi.org/10.26634/jele.7.3.13559
[20]. Marani, R., Gelao, G., & Perri, A. G. (2012). Comparison of ABM SPICE library with verilog-A for compact CNTFET model implementation. Current Nanoscience, 8(4), 556-565. https://doi.org/10.2174/ 157341312801784230
[21]. Marani, R., Gelao, G., & Perri, A. G. (2013). Modelling of carbon nanotube field effect transistors oriented to SPICE software for A/D circuit design. Microelectronics Journal, 44(1), 33-38. https://doi.org/10.1016/j.mejo. 2011.07.012
[22]. Munge, B. S., Fisher, J., Millord, L. N., Krause, C. E., Dowd, R. S., & Rusling, J. F. (2010). Sensitive electrochemical immunosensor for matrix metallo proteinase-3 based on single-wall carbon nanotubes. Analyst, 135(6), 1345-1350. https://doi.org/10.1039/ C0AN00028K.
[23]. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., & Whitesides, G. M. (2001). A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir, 17(18), 5605-5620. https://doi.org/10.1021/la010384m
[24]. Ovádeková, R., Jantová, S., Letašiová, S., Štepánek, I., & Labuda, J. (2006). Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells. Analytical and Bioanalytical Chemistry, 386(7-8), 2055-2062. https://doi.org/10.1007/s00216-006-0830-6
[25]. Pan, J., Li, F., & Choi, J. H. (2017). Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. Journal of Materials Chemistry B, 5(32), 6511- 6522. https://doi.org/10.1039/C7TB00748E.
[26]. Patolsky, F., Weizmann, Y., & Willner, I. (2004). Long‐range electrical contacting of redox enzymes by SWCNT connectors. Angewandte Chemie International Edition, 43(16), 2113-2117. https://doi.org/10.1002/ anie.200353275
[27]. Perri, A. G., & Marani, R. (2017). CNTFET Electronics: Design Principles. Italy: Progedit (pp. 1-220).
[28]. Perri, A.G. (2011). Advanced Electronic Devices, Italy: Progedit (pp. 1-344).
[29]. Riberi, W. I., Tarditto, L. V., Zon, M. A., Arévalo, F. J., & Fernández, H. (2018). Development of an electrochemical immune sensor to determine zearalenone in maize using carbon screen printed electrodes modified with multi-walled carbon nanotubes/polyethyleneimine dispersions. Sensors and Actuators B: Chemical, 254, 1271-1277. https://doi.org/ 10.1016/j.snb.2017.07.113
[30]. Roy, S., Vedala, H., & Choi, W. (2006). Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology, 17(4), S14-S18. Retrieved from https://iopscience.iop.org/article/10.1088/0957- 4484/17/4/003
[31]. Tîlmaciu, C.-M., & Morris, M.C.(2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3, 1-59. https://doi.org/10.3389/fchem.2015.00059
[32]. Thirumalraj, B., Kubendhiran, S., Chen, S. M., & Lin, K. Y. (2017). Highly sensitive electrochemical detection of palmatine using a biocompatible multiwalled carbon nanotube/poly-l-lysine composite. Journal of Colloid and Interface Science, 498, 144-152. https://doi.org/ 10.1016/j.jcis.2017.03.045
[33]. Tsujita, Y., Maehashi, K., Matsumoto, K., Chikae, M., Takamura, Y., & Tamiya, E. (2009). Microfluidic and label-free multi-immunosensors based on carbon nanotube microelectrodes. Japanese Journal of Applied Physics, 48(6S), 06FJ02.
[34]. Vilian, A. E., Madhu, R., Chen, S. M., Veeramani, V., Sivakumar, M., Huh, Y. S., & Han, Y. K. (2015). Facile synthesis of MnO2/carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. Journal of Materials Chemistry B, 3(30), 6285-6292. https://doi.org/ 10.1039/C5TB00508F
[35]. Wang, S. G., Zhang, Q., Wang, R., Yoon, S. F., Ahn, J., Yang, D. J., Tian, J. Z., Li, J. Q., & Zhou, Q. (2003). Multiwalled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochemistry Communications, 5(9), 800-803. https://doi.org/10.1016/ j.elecom.2003.07.007
[36]. Welsher, K., Liu, Z., Daranciang, D., & Dai, H. (2008). Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Letters, 8(2), 586-590. https://doi.org/ 10.1021/nl072949q
[37]. Wu, X., Zhao, B., Wu, P., Zhang, H., & Cai, C. (2009). Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. The Journal of Physical Chemistry B, 113(40), 13365-13373. https://doi.org/10.1021/jp905632k
[38]. Xiao-Ming, M., Mi, S., Yue, L., Yin-Jin, L., Fang, L., Long-Hua, G., Bin, Q., Zhen-Yu, L., & Guo-Nan, C. (2018). Progress of visual biosensor based on gold nanoparticles. Chinese Journal of Analytical Chemistry, 46(1), 1-10. https://doi.org/10.1016/S1872-2040(17)61061-2
[39]. Yang, Z., Chen, X., Chen, C., Li, W., Zhang, H., Xu, L., & Yi, B. (2007). Noncovalent‐wrapped sidewall functionalization of multiwalled carbon nanotubes with polyimide. Polymer Composites, 28(1), 36-41. https://doi.org/10.1002/pc.20254
[40]. Zhang, J., Boghossian, A. A., Barone, P. W., Rwei, A., Kim, J. H., Lin, D., Heller, D. A., Hilmer, A. J., Nain, N., Reuel, N. F., & Strano, M. S. (2010). Single molecule detection of nitric oxide enabled by d (AT) 15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. Journal of the American Chemical Society, 133(3), 567- 581. https://doi.org/10.1021/ja1084942
[41]. Zheng, M., Jagota, A., Semke, E. D., Diner, B. A., McLean, R. S., Lustig, S. R., Richardson, R. E., & Tassi, N. G. (2003). DNA-assisted dispersion and separation of carbon nano tubes. Nature Materials, 2 (5), 338-342. https://doi.org/10.1038/nmat877
[42]. Zheng, T. T., Zhang, R., Zou, L., & Zhu, J. J. (2012). A label-free cytosensor for the enhanced electrochemical detection of cancer cells using polydopamine-coated carbon nanotubes. Analyst, 137(6), 1316-1318. https://doi.org/10.1039/C2AN16023D
[43]. Zhong, Q., Diev, V. V., Roberts, S. T., Antunez, P. D., Brutchey, R. L., Bradforth, S. E., & Thompson, M. E. (2013). Fused porphyrin–single-walled carbon nanotube hybrids: Efficient Formation and photophysical characterization. ACS Nano, 7(4), 3466-3475. https://doi.org/10.1021/ nn400362e