References
[1]. Alamu, O. J., Waheed, M. A., Jekayinfa, S. O., & Akintola, T. A. (2007). Optimal transesterification duration for biodiesel production from Nigerian palm kernel oil. Agricultural Engineering International: CIGR Journal, 9, 168-179.
[2]. Aliyu, B., Agnew, B., & Douglas, S. (2010). Croton megalocarpus (Musine) seeds as a potential source of bio-diesel. Biomass and Bioenergy, 34(10), 1495-1499. https://doi.org/10.1016/j.biombioe.2010.04.026
[3]. Aluyor, E. O., & Ori-Jesu, M. (2008). The use of antioxidants in vegetable oils–A review. African Journal of Biotechnology, 7(25), 4836-4842.
[4]. Aranda, D. A., Santos, R. T., Tapanes, N. C., Ramos, A. L. D., & Antunes, O. A. C. (2008). Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catalysis Letters, 122(1- 2), 20-25. https://doi.org/10.1007/s10562-007-9318-z
[5]. ASTM Standard D2274. (2010). Standard Test Method for Oxidation Stability of Distillate Fuel Oil (Accelerated Method). ASTM International. http://dx.doi.org/10.1520/D2274-10.
[6]. ASTM Standard D7462. (2011). Standard Test Method for Oxidation Stability of Biodiesel (B100) and Blends of Biodiesel with Middle Distillate Petroleum Fuel (Accelerated Method). http://dx.doi.org/10.1520/D7462- 11
[7]. Atapour, M., & Kariminia, H. R. (2011). Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy, 88(7), 2377-2381. https://doi.org/10.1016/j.apenergy.2011.01.014
[8]. Aydin, H., & Ilkılıc, C. (2010). Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine. Applied Thermal Engineering, 30 (10), 1199-1204. https://doi.org/10.1016/j.applthermaleng.2010.01.037
[9]. Bamgboye, A. I., & Hansen, A. C. (2008). Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 22(1), 21-29.
[10]. Bouaid, A., Martinez, M., & Aracil, J. (2007). Long storage stability of biodiesel from vegetable and used frying oils. Fuel, 86(16), 2596-2602. https://doi.org/ 10.1016/j.fuel.2007.02.014
[11]. Buyukkaya, E. (2010). Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 89(10), 3099-3105. https://doi.org/ 10.1016/j.fuel.2010.05.034
[12]. Canakci, M. (2007a). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98(1), 183-190. https://doi.org/10.1016/ j.biortech.2005.11.022
[13]. Canakci, M. (2007b). Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource Technology, 98(6), 1167-1175. https://doi.org/10.1016/j. biortech.2006.05.024
[14]. Chandel, R., Kumar, S., & Kumar, R. (2016). Performance and emission characteristics in a diesel Engine using Cotton Seed Oil and Diesel Blend. International Journal of Enhanced Research in Science, Technology & Engineering, 6, 78-88.
[15]. Cheng, C. H., Cheung, C. S., Chan, T. L., Lee, S. C., Yao, C. D., & Tsang, K. S. (2008). Comparison of emissions of a direct injection diesel engine operating on biodiesel with emulsified and fumigated methanol. Fuel, 87(10-11), 1870-1879. https://doi.org/10.1016/j.fuel.2008.01.002
[16]. Conceiçao, M. M., Fernandes, V. J., Araújo, A. S., Farias, M. F., Santos, I. M., & Souza, A. G. (2007). Thermal and oxidative degradation of castor oil biodiesel. Energy & Fuels, 21(3), 1522-1527. https://doi.org/10.1021/ ef0602224
[17]. Das, L. M., Bora, D. K., Pradhan, S., Naik, M. K., & Naik, S. N. (2009). Long-term storage stability of biodiesel produced from Karanja oil. Fuel, 88(11), 2315-2318. https://doi.org/10.1016/j.fuel.2009.05.005
[18]. Davis, J. P., Price, K. M., Dean, L. L., Sweigart, D. S., Cottonaro, J. M., & Sanders, T. H. (2016). Peanut oil stability and physical properties across a range of industrially relevant oleic acid/linoleic acid ratios. Peanut Science, 43(1), 1-11. https://doi.org/10.3146/0095-3679-43.1.1
[19]. Demirbas, A. (2006). Biodiesel production via noncatalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47(15-16), 2271- 2282. https://doi.org/10.1016/j.enconman.2005.11.019
[20]. Domingos, A. K., Saad, E. B., Vechiatto, W. W., Wilhelm, H. M., & Ramos, L. P. (2007). The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). Journal of the Brazilian Chemical Society, 18(2), 416-423. http://dx.doi.org/10.1590/S0103- 50532007000200026
[21]. Dunn, R. O. (2000). Analysis of oxidative stability of methyl soyate by pressurized-differential scanning calorimetry. Transactions of the ASAE-American Society of Agricultural Engineers, 43(5), 1203-1210.
[22]. Dunn, R. O. (2002). Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel). Journal of the American Oil Chemists' Society, 79(9), 915-920. https://doi.org/10.1007/s11746-002-0579-2
[23]. Dunn, R. O. (2007). Effect of temperature on the oil stability index (OSI) of biodiesel. Energy & Fuels, 22(1), 657- 662. https://doi.org/10.1021/ef700412c
[24]. Dwivedi, G., Jain, S., & Sharma, M. P. (2011). Impact analysis of biodiesel on engine performance—A review. Renewable and Sustainable Energy Reviews, 15(9), 4633- 4641. https://doi.org/10.1016/j.rser.2011.07.089
[25]. Fernandes, D. M., Serqueira, D. S., Portela, F. M., Assunção, R. M., Munoz, R. A., & Terrones, M. G. (2012). Preparation and characterization of methylic and ethylic biodiesel from cottonseed oil and effect of tertbutylhydroquinone on its oxidative stability. Fuel, 97, 658- 661. https://doi.org/10.1016/j.fuel.2012.01.067
[26]. Formo, M.W., Jungermann, E., Noris, F. & Sonntag, N.O.V (1979). Bailey's Indust Oil Fat Products. New York: John Wiley and Sons.
[27]. Fröhlich, A., & Schober, S. (2007). The influence of tocopherols on the oxidation stability of methyl esters. Journal of the American Oil Chemists' Society, 84(6), 579- 585. https://doi.org/10.1007/s11746-007-1075-z
[28]. Gan, S., & Ng, H. K. (2010). Effects of antioxidant additives on pollutant formation from the combustion of palm oil methyl ester blends with diesel in a non-pressurised burner. Energy Conversion and Management, 51(7), 1536- 1546. https://doi.org/10.1016/j.enconman.2010.02.012
[29]. Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28(6), 601-605. https://doi.org/10.1016/j.biombioe.2004.11.009
[30]. Giakoumis, E. G. (2013). A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy, 50, 858-878. https://doi.org/10.1016/j. renene.2012.07.040
[31]. Gumus, M., & Kasifoglu, S. (2010). Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass and Bioenergy, 34(1), 134- 139. https://doi.org/10.1016/j.biombioe.2009.10.010
[32]. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143-169. https://doi.org/ 10.1016/j.rser.2011.07.143
[33]. Isbell, T. A., Abbott, T. P., & Carlson, K. D. (1999). Oxidative stability index of vegetable oils in binary mixtures with meadow foam oil. Industrial Crops and Products, 9(2), 115-123. https://doi.org/10.1016/S0926-6690(98)00022-3
[34]. Issariyakul, T., Kulkarni, M. G., Dalai, A. K., & Bakhshi, N. N. (2007). Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Processing Technology, 88(5), 429-436. https://doi.org/ 10.1016/j.fuproc.2006.04.007
[35]. Joyner, N. T., & McIntyre, J. E. (1938). The oven test as an index of keeping quality. Oil and Soap, 15(7), 184-186. https://doi.org/10.1007/BF02639526
[36]. Knothe, G. (2002). Structure indices in FA chemistry. How relevant is the iodine value? Journal of the American Oil Chemists' Society, 79(9), 847-854. https://doi.org/ 10.1007/s11746-002-0569-4
[37]. Knothe, G., & Dunn, R. O. (2003). Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. Journal of the American Oil Chemists' Society, 80(10), 1021-1026. https://doi.org/10.1007/s11746-003-0814-x
[38]. Knothe, G., Dunn, R. O., & Bagby, M. O. (1997). The use of vegetable oils and their derivatives as alternative diesel fuels. Oil Chemical Research. National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, 172-208. https://doi.org/10.1021/bk-1997-0666.ch010
[39]. Kousoulidou, M., Fontaras, G., Ntziachristos, L., & Samaras, Z. (2010). Biodiesel blend effects on commonrail diesel combustion and emissions. Fuel, 89(11), 3442- 3449. https://doi.org/10.1016/j.fuel.2010.06.034
[40]. Kris-Etherton, P. M., Zhao, G., Binkoski, A. E., Coval, S. M., & Etherton, T. D. (2001). The effects of nuts on coronary heart disease risk. Nutrition Reviews, 59(4), 103-111. https://doi.org/10.1111/j.1753-4887.2001.tb06996.x
[41]. Kumar, R., & Kumar, S. (2017). Impact of eucalyptus oil and diesel mixture on engine performance in a four stroke single cylinder engine operation, International Journal for Scientific Research & Development, 5, 1288-1297.
[42]. Kumar, S., Chandel, R., & Kumar, R. (2016). Performance and emission characteristics of eucalyptus oil and diesel blend in four stroke single cylinder diesel engine, International Journal of Engineering Sciences & Research Technology, 5(2), 710-721. http://doi.org/10.5281/zenodo. 46497
[43]. Laforgia, D., & Ardito, V. (1995). Biodiesel fueled IDI engines: performances, emissions and heat release investigation. Bioresource Technology, 51(1), 53-59. https://doi.org/10.1016/0960-8524(94)00095-I
[44]. Lujan, J. M., Bermúdez, V., Tormos, B., & Pla, B. (2009). Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Performance and emissions (II). Biomass and Bioenergy, 33(6-7), 948-956. https://doi.org/10.1016/j.biombioe. 2009.02.003
[45]. Mata, T. M., & Martins, A. A. (2010). Biodiesel Production Processes, Recent Progress in Chemical Engineering, 12, 313-341. Retrieved from https://www. researchgate.net/publication/280728855.
[46]. McDonnell, K., Ward, S., Leahy, J. J., & McNulty, P. (1999). Properties of rapeseed oil for use as a diesel fuel extender. Journal of the American Oil Chemists' Society, 76(5), 539-543. https://doi.org/10.1007/s11746-999-0001-y
[47]. Meira, M., Quintella, C. M., dos Santos Tanajura, A., Da Silva, H. R. G., Fernando, J. D. E. S., da Costa Neto, P. R., ... & Nascimento, L. L. (2011). Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration. Talanta, 85(1), 430-434. https://doi.org/10.1016/j.talanta.2011.04.002
[48]. Monyem, A., & Van Gerpen, J. H. (2001). The effect of biodiesel oxidation on engine performance and emissions. Biomass and Bioenergy, 20(4), 317-325. https://doi.org/10. 1016/S0961-9534(00)00095-7
[49]. Moser, B. R. (2009). Comparative oxidative stability of fatty acid alkyl esters by accelerated methods. Journal of the American Oil Chemists' Society, 86(7), 699-706. https://doi.org/10.1007/s11746-009-1376-5
[50]. Moser, B. R., & Vaughn, S. F. (2010). Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101(2), 646-653. https://doi.org/10.1016/j. biortech.2009.08.054
[51]. Murillo, S., Miguez, J. L., Porteiro, J., Granada, E., & Moran, J. C. (2007). Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel, 86(12- 13), 1765-1771. https://doi.org/10.1016/j.fuel.2006.11.031
[52]. Nabi, M. N., Akhter, M. S., & Shahadat, M. M. Z. (2006). Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Bioresource Technology, 97(3), 372-378. https://doi.org/10.1016/j.biortech. 2005.03.013
[53]. Neff, W. E., Selke, E., Mounts, T. L., Rinsch, W., Frankel, E. N., & Zeitoun, M. A. M. (1992). Effect of triacylglycerol composition and structures on oxidative stability of oils from selected soybean germplasm. Journal of the American Oil Chemists' Society, 69(2), 111-118. https://doi.org/10.1007/ BF02540559
[54]. Peterson, C. L. D. L., & Reece, D. (1996). Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck. Transactions of the ASAE, 39(3), 805-816. https://doi.org/10.13031/ 2013.27564
[55]. Prusty, B. A. K., Chandra, R., & Azeez, P. A. (2008). Biodiesel: Freedom from dependence on fossil fuels? Nature Publishing Group, 713, 1-27. http://dx.doi.org/ 10.1038/npre.2008.2658.1
[56]. Rashed, M. M., Kalam, M. A., Masjuki, H. H., Rashedul, H. K., Ashraful, A. M., Shancita, I., & Ruhul, A. M. (2015). Stability of biodiesel, its improvement and the effect of antioxidant treated blends on engine performance and emission. RSC Advances, 5(46), 36240-36261. https://doi.org/10.1039/C4RA14977G
[57]. Rashid, U., Anwar, F., & Knothe, G. (2011). Biodiesel from Milo (Thespesia populnea L.) seed oil. Biomass and Bioenergy, 35(9), 4034-4039. https://doi.org/10.1016/ j.biombioe.2011.06.043
[58]. Roskilly, A. P., Nanda, S. K., Wang, Y. D., & Chirkowski, J. (2008). The performance and the gaseous emissions of two small marine craft diesel engines fuelled with biodiesel. Applied Thermal Engineering, 28(8-9), 872-880. https://doi.org/10.1016/j.applthermaleng.2007.07.007
[59]. Ryu, K. (2009). Effect of antioxidants on the oxidative stability and combustion characteristics of biodiesel fuels in an indirect-injection (IDI) diesel engine. Journal of Mechanical Science and Technology, 23(11), 3105-3113. https://doi.org/10.1007/s12206-009-0902-6
[60]. Ryu, K. (2010). The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresource Technology, 101(1), S78-S82. https://doi.org/10.1016/j.biortech.2009.05.034
[61]. Sarin, A., Arora, R., Singh, N. P., Sharma, M., & Malhotra, R. K. (2009). Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy, 34(9), 1271-1275. https://doi.org/10.1016/j.energy.2009.05.018
[62]. Sathiyamoorthi, R., & Sankaranarayanan, G. (2016). Effect of antioxidant additives on the performance and emission characteristics of a DICI engine using neat lemongrass oil–diesel blend. Fuel, 174, 89-96. https://doi.org/10.1016/j.fuel.2016.01.076
[63]. Scharmer, K. (2006). Biodiesel from set-aside land. Sustainable Agriculture for Food, Energy and Industry, 2, 844-848.
[64]. Sendzikiene, E., Makareviciene, V., & Janulis, P. (2005). Oxidation Stability of Biodiesel Fuel Produced from Fatty Wastes. Polish Journal of Environmental Studies, 14(3), 335–339.
[65]. Shahabuddin, M., Kalam, M. A., Masjuki, H. H., Bhuiya, M. M. K., & Mofijur, M. (2012). An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy, 44(1), 616-622. https://doi.org/10.1016/j.energy.2012.05.032
[66]. Sorate, K. A., Bhale, P. V., & Meena, R. N. (2016). Oxidation stability of biodiesel derived from high free fatty acid feedstock. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(10), 1410-1418. https://doi.org/10.1080/15567036.2014.910568
[67]. Tang, H., Wang, A., Salley, S. O., & Ng, K. S. (2008). The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. Journal of the American Oil Chemists' Society, 85(4), 373-382. https://doi.org/10.1007/s11746- 008-1208-z
[68]. Tian, K., & Dasgupta, P. K. (1999). Determination of oxidative stability of oils and fats. Analytical Chemistry, 71(9), 1692-1698. https://doi.org/10.1021/ac981365t
[69]. Van, G., Cundiff, E. E., Gavett, C., Hansen, C., Peterson, M. A., Sanderson, H. & Shapouri, D. L. (1986). Third liquid fuel conference: Liquid fuel and industrial products from renewable resources, American Society of Agricultural Engineers, 7, 197-206.
[70]. Verma, P., & Singh, V. M. (2014). Assessment of diesel engine performance using cotton seed biodiesel. Integrated Research Advances, 1(1), 1-4.
[71]. Westbrook, S. R. (2005). Evaluation and Comparison of Test Methods to Measure the Oxidation Stability of Neat Biodiesel. Subcontract Report: National Renewable Energy Laboratory, 3, 1-19. Retreieved from https://www. nrel.gov/docs/fy06osti/38983.pdf
[72]. Yaakob, Z., Narayanan, B. N., & Padikkaparambil, S. (2014). A review on the oxidation stability of biodiesel. Renewable and Sustainable Energy Reviews, 35, 136-153. https://doi.org/10.1016/j.rser.2014.03.055
[73]. Yaakob, Z., Sukarman, I. S. B., Narayanan, B., Abdullah, S. R. S., & Ismail, M. (2012). Utilization of palm empty fruit bunch for the production of biodiesel from Jatropha curcas oil. Bioresource Technology, 104, 695- 700. https://doi.org/10.1016/j.biortech.2011.10.058
[74]. Yamane, K., Kawasaki, K., Sone, K., Hara, T., & Prakoso, T. (2007). Oxidation stability of biodiesel and its effects on diesel combustion and emission characteristics. International Journal of Engine Research, 8(3), 307-319. https://doi.org/10.1243%2F14680874JER00207
[75]. Yang, Z., Hollebone, B. P., Wang, Z., Yang, C., & Landriault, M. (2013). Factors affecting oxidation stability of commercially available biodiesel products. Fuel Processing Technology, 106, 366-375. https://doi.org/10. 1016/j.fuproc.2012.09.001
[76]. Zheng, M., Mulenga, M. C., Reader, G. T., Wang, M., Ting, D. S., & Tjong, J. (2008). Biodiesel engine performance and emissions in low temperature combustion. Fuel, 87(6), 714-722. https://doi.org/10.1016/ j.fuel.2007.05.039