Effect of Antioxidants on Oxidation Stability of Biodiesel Produced from Different Feedstocks: A Critical Review

Rakesh Kumar*, Santosh Kumar**
*_** Department of Mechanical Engineering, CGC-Chandigarh Engineering College, Landran, Mohali, Punjab, India.
Periodicity:August - October'2019
DOI : https://doi.org/10.26634/jme.9.4.16354

Abstract

The main obstacle in biodiesel used in internal combustion engine is oxidation instability due to presence of unexpected high unsaturation and it produces adverse effects like sludge formation, rise in acid value, etc. These effects cause engine problems like fuel filter blockage, choking of injector, which causes misfiring or hard starting, deposition in injector pump, etc. To solve these problems, antioxidants are mixed to increase the oxidation stability of biodiesel. Hence, the study aimed to review the work done by various researchers and study the effect of various antioxidants on oxidation stability, methods used to determine the oxidation stability, and factors affecting engine performance of biodiesel (vegetable oils or animal fats, etc), so that this manuscript could become the torchbearer for the futuristic researchers working in the domain of biodiesel production. From the literature review it is noticed that for most of the biodiesel samples, Propyl gallate is the best antioxidant. In addition, the analysis of the IR spectra is an economical, efficient, simple, fast and non-destructive technique to determine the oxidation stability of biodiesel.

Keywords

Oxidation Stability, Biodiesel, Antioxidants, Performance, Emission.

How to Cite this Article?

Kumar, R., and Kumar, S. (2019). Effect of Antioxidants on Oxidation Stability of Biodiesel Produced from Different Feedstocks: A Critical Review. i-manager’s Journal on Mechanical Engineering, 9(4), 47-60. https://doi.org/10.26634/jme.9.4.16354

References

[1]. Alamu, O. J., Waheed, M. A., Jekayinfa, S. O., & Akintola, T. A. (2007). Optimal transesterification duration for biodiesel production from Nigerian palm kernel oil. Agricultural Engineering International: CIGR Journal, 9, 168-179.
[2]. Aliyu, B., Agnew, B., & Douglas, S. (2010). Croton megalocarpus (Musine) seeds as a potential source of bio-diesel. Biomass and Bioenergy, 34(10), 1495-1499. https://doi.org/10.1016/j.biombioe.2010.04.026
[3]. Aluyor, E. O., & Ori-Jesu, M. (2008). The use of antioxidants in vegetable oils–A review. African Journal of Biotechnology, 7(25), 4836-4842.
[4]. Aranda, D. A., Santos, R. T., Tapanes, N. C., Ramos, A. L. D., & Antunes, O. A. C. (2008). Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catalysis Letters, 122(1- 2), 20-25. https://doi.org/10.1007/s10562-007-9318-z
[5]. ASTM Standard D2274. (2010). Standard Test Method for Oxidation Stability of Distillate Fuel Oil (Accelerated Method). ASTM International. http://dx.doi.org/10.1520/D2274-10.
[6]. ASTM Standard D7462. (2011). Standard Test Method for Oxidation Stability of Biodiesel (B100) and Blends of Biodiesel with Middle Distillate Petroleum Fuel (Accelerated Method). http://dx.doi.org/10.1520/D7462- 11
[7]. Atapour, M., & Kariminia, H. R. (2011). Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy, 88(7), 2377-2381. https://doi.org/10.1016/j.apenergy.2011.01.014
[8]. Aydin, H., & Ilkılıc, C. (2010). Effect of ethanol blending with biodiesel on engine performance and exhaust emissions in a CI engine. Applied Thermal Engineering, 30 (10), 1199-1204. https://doi.org/10.1016/j.applthermaleng.2010.01.037
[9]. Bamgboye, A. I., & Hansen, A. C. (2008). Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 22(1), 21-29.
[10]. Bouaid, A., Martinez, M., & Aracil, J. (2007). Long storage stability of biodiesel from vegetable and used frying oils. Fuel, 86(16), 2596-2602. https://doi.org/ 10.1016/j.fuel.2007.02.014
[11]. Buyukkaya, E. (2010). Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 89(10), 3099-3105. https://doi.org/ 10.1016/j.fuel.2010.05.034
[12]. Canakci, M. (2007a). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98(1), 183-190. https://doi.org/10.1016/ j.biortech.2005.11.022
[13]. Canakci, M. (2007b). Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource Technology, 98(6), 1167-1175. https://doi.org/10.1016/j. biortech.2006.05.024
[14]. Chandel, R., Kumar, S., & Kumar, R. (2016). Performance and emission characteristics in a diesel Engine using Cotton Seed Oil and Diesel Blend. International Journal of Enhanced Research in Science, Technology & Engineering, 6, 78-88.
[15]. Cheng, C. H., Cheung, C. S., Chan, T. L., Lee, S. C., Yao, C. D., & Tsang, K. S. (2008). Comparison of emissions of a direct injection diesel engine operating on biodiesel with emulsified and fumigated methanol. Fuel, 87(10-11), 1870-1879. https://doi.org/10.1016/j.fuel.2008.01.002
[16]. Conceiçao, M. M., Fernandes, V. J., Araújo, A. S., Farias, M. F., Santos, I. M., & Souza, A. G. (2007). Thermal and oxidative degradation of castor oil biodiesel. Energy & Fuels, 21(3), 1522-1527. https://doi.org/10.1021/ ef0602224
[17]. Das, L. M., Bora, D. K., Pradhan, S., Naik, M. K., & Naik, S. N. (2009). Long-term storage stability of biodiesel produced from Karanja oil. Fuel, 88(11), 2315-2318. https://doi.org/10.1016/j.fuel.2009.05.005
[18]. Davis, J. P., Price, K. M., Dean, L. L., Sweigart, D. S., Cottonaro, J. M., & Sanders, T. H. (2016). Peanut oil stability and physical properties across a range of industrially relevant oleic acid/linoleic acid ratios. Peanut Science, 43(1), 1-11. https://doi.org/10.3146/0095-3679-43.1.1
[19]. Demirbas, A. (2006). Biodiesel production via noncatalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47(15-16), 2271- 2282. https://doi.org/10.1016/j.enconman.2005.11.019
[20]. Domingos, A. K., Saad, E. B., Vechiatto, W. W., Wilhelm, H. M., & Ramos, L. P. (2007). The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). Journal of the Brazilian Chemical Society, 18(2), 416-423. http://dx.doi.org/10.1590/S0103- 50532007000200026
[21]. Dunn, R. O. (2000). Analysis of oxidative stability of methyl soyate by pressurized-differential scanning calorimetry. Transactions of the ASAE-American Society of Agricultural Engineers, 43(5), 1203-1210.
[22]. Dunn, R. O. (2002). Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel). Journal of the American Oil Chemists' Society, 79(9), 915-920. https://doi.org/10.1007/s11746-002-0579-2
[23]. Dunn, R. O. (2007). Effect of temperature on the oil stability index (OSI) of biodiesel. Energy & Fuels, 22(1), 657- 662. https://doi.org/10.1021/ef700412c
[24]. Dwivedi, G., Jain, S., & Sharma, M. P. (2011). Impact analysis of biodiesel on engine performance—A review. Renewable and Sustainable Energy Reviews, 15(9), 4633- 4641. https://doi.org/10.1016/j.rser.2011.07.089
[25]. Fernandes, D. M., Serqueira, D. S., Portela, F. M., Assunção, R. M., Munoz, R. A., & Terrones, M. G. (2012). Preparation and characterization of methylic and ethylic biodiesel from cottonseed oil and effect of tertbutylhydroquinone on its oxidative stability. Fuel, 97, 658- 661. https://doi.org/10.1016/j.fuel.2012.01.067
[26]. Formo, M.W., Jungermann, E., Noris, F. & Sonntag, N.O.V (1979). Bailey's Indust Oil Fat Products. New York: John Wiley and Sons.
[27]. Fröhlich, A., & Schober, S. (2007). The influence of tocopherols on the oxidation stability of methyl esters. Journal of the American Oil Chemists' Society, 84(6), 579- 585. https://doi.org/10.1007/s11746-007-1075-z
[28]. Gan, S., & Ng, H. K. (2010). Effects of antioxidant additives on pollutant formation from the combustion of palm oil methyl ester blends with diesel in a non-pressurised burner. Energy Conversion and Management, 51(7), 1536- 1546. https://doi.org/10.1016/j.enconman.2010.02.012
[29]. Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28(6), 601-605. https://doi.org/10.1016/j.biombioe.2004.11.009
[30]. Giakoumis, E. G. (2013). A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy, 50, 858-878. https://doi.org/10.1016/j. renene.2012.07.040
[31]. Gumus, M., & Kasifoglu, S. (2010). Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass and Bioenergy, 34(1), 134- 139. https://doi.org/10.1016/j.biombioe.2009.10.010
[32]. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143-169. https://doi.org/ 10.1016/j.rser.2011.07.143
[33]. Isbell, T. A., Abbott, T. P., & Carlson, K. D. (1999). Oxidative stability index of vegetable oils in binary mixtures with meadow foam oil. Industrial Crops and Products, 9(2), 115-123. https://doi.org/10.1016/S0926-6690(98)00022-3
[34]. Issariyakul, T., Kulkarni, M. G., Dalai, A. K., & Bakhshi, N. N. (2007). Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Processing Technology, 88(5), 429-436. https://doi.org/ 10.1016/j.fuproc.2006.04.007
[35]. Joyner, N. T., & McIntyre, J. E. (1938). The oven test as an index of keeping quality. Oil and Soap, 15(7), 184-186. https://doi.org/10.1007/BF02639526
[36]. Knothe, G. (2002). Structure indices in FA chemistry. How relevant is the iodine value? Journal of the American Oil Chemists' Society, 79(9), 847-854. https://doi.org/ 10.1007/s11746-002-0569-4
[37]. Knothe, G., & Dunn, R. O. (2003). Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. Journal of the American Oil Chemists' Society, 80(10), 1021-1026. https://doi.org/10.1007/s11746-003-0814-x
[38]. Knothe, G., Dunn, R. O., & Bagby, M. O. (1997). The use of vegetable oils and their derivatives as alternative diesel fuels. Oil Chemical Research. National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, 172-208. https://doi.org/10.1021/bk-1997-0666.ch010
[39]. Kousoulidou, M., Fontaras, G., Ntziachristos, L., & Samaras, Z. (2010). Biodiesel blend effects on commonrail diesel combustion and emissions. Fuel, 89(11), 3442- 3449. https://doi.org/10.1016/j.fuel.2010.06.034
[40]. Kris-Etherton, P. M., Zhao, G., Binkoski, A. E., Coval, S. M., & Etherton, T. D. (2001). The effects of nuts on coronary heart disease risk. Nutrition Reviews, 59(4), 103-111. https://doi.org/10.1111/j.1753-4887.2001.tb06996.x
[41]. Kumar, R., & Kumar, S. (2017). Impact of eucalyptus oil and diesel mixture on engine performance in a four stroke single cylinder engine operation, International Journal for Scientific Research & Development, 5, 1288-1297.
[42]. Kumar, S., Chandel, R., & Kumar, R. (2016). Performance and emission characteristics of eucalyptus oil and diesel blend in four stroke single cylinder diesel engine, International Journal of Engineering Sciences & Research Technology, 5(2), 710-721. http://doi.org/10.5281/zenodo. 46497
[43]. Laforgia, D., & Ardito, V. (1995). Biodiesel fueled IDI engines: performances, emissions and heat release investigation. Bioresource Technology, 51(1), 53-59. https://doi.org/10.1016/0960-8524(94)00095-I
[44]. Lujan, J. M., Bermúdez, V., Tormos, B., & Pla, B. (2009). Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Performance and emissions (II). Biomass and Bioenergy, 33(6-7), 948-956. https://doi.org/10.1016/j.biombioe. 2009.02.003
[45]. Mata, T. M., & Martins, A. A. (2010). Biodiesel Production Processes, Recent Progress in Chemical Engineering, 12, 313-341. Retrieved from https://www. researchgate.net/publication/280728855.
[46]. McDonnell, K., Ward, S., Leahy, J. J., & McNulty, P. (1999). Properties of rapeseed oil for use as a diesel fuel extender. Journal of the American Oil Chemists' Society, 76(5), 539-543. https://doi.org/10.1007/s11746-999-0001-y
[47]. Meira, M., Quintella, C. M., dos Santos Tanajura, A., Da Silva, H. R. G., Fernando, J. D. E. S., da Costa Neto, P. R., ... & Nascimento, L. L. (2011). Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration. Talanta, 85(1), 430-434. https://doi.org/10.1016/j.talanta.2011.04.002
[48]. Monyem, A., & Van Gerpen, J. H. (2001). The effect of biodiesel oxidation on engine performance and emissions. Biomass and Bioenergy, 20(4), 317-325. https://doi.org/10. 1016/S0961-9534(00)00095-7
[49]. Moser, B. R. (2009). Comparative oxidative stability of fatty acid alkyl esters by accelerated methods. Journal of the American Oil Chemists' Society, 86(7), 699-706. https://doi.org/10.1007/s11746-009-1376-5
[50]. Moser, B. R., & Vaughn, S. F. (2010). Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101(2), 646-653. https://doi.org/10.1016/j. biortech.2009.08.054
[51]. Murillo, S., Miguez, J. L., Porteiro, J., Granada, E., & Moran, J. C. (2007). Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel, 86(12- 13), 1765-1771. https://doi.org/10.1016/j.fuel.2006.11.031
[52]. Nabi, M. N., Akhter, M. S., & Shahadat, M. M. Z. (2006). Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Bioresource Technology, 97(3), 372-378. https://doi.org/10.1016/j.biortech. 2005.03.013
[53]. Neff, W. E., Selke, E., Mounts, T. L., Rinsch, W., Frankel, E. N., & Zeitoun, M. A. M. (1992). Effect of triacylglycerol composition and structures on oxidative stability of oils from selected soybean germplasm. Journal of the American Oil Chemists' Society, 69(2), 111-118. https://doi.org/10.1007/ BF02540559
[54]. Peterson, C. L. D. L., & Reece, D. (1996). Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck. Transactions of the ASAE, 39(3), 805-816. https://doi.org/10.13031/ 2013.27564
[55]. Prusty, B. A. K., Chandra, R., & Azeez, P. A. (2008). Biodiesel: Freedom from dependence on fossil fuels? Nature Publishing Group, 713, 1-27. http://dx.doi.org/ 10.1038/npre.2008.2658.1
[56]. Rashed, M. M., Kalam, M. A., Masjuki, H. H., Rashedul, H. K., Ashraful, A. M., Shancita, I., & Ruhul, A. M. (2015). Stability of biodiesel, its improvement and the effect of antioxidant treated blends on engine performance and emission. RSC Advances, 5(46), 36240-36261. https://doi.org/10.1039/C4RA14977G
[57]. Rashid, U., Anwar, F., & Knothe, G. (2011). Biodiesel from Milo (Thespesia populnea L.) seed oil. Biomass and Bioenergy, 35(9), 4034-4039. https://doi.org/10.1016/ j.biombioe.2011.06.043
[58]. Roskilly, A. P., Nanda, S. K., Wang, Y. D., & Chirkowski, J. (2008). The performance and the gaseous emissions of two small marine craft diesel engines fuelled with biodiesel. Applied Thermal Engineering, 28(8-9), 872-880. https://doi.org/10.1016/j.applthermaleng.2007.07.007
[59]. Ryu, K. (2009). Effect of antioxidants on the oxidative stability and combustion characteristics of biodiesel fuels in an indirect-injection (IDI) diesel engine. Journal of Mechanical Science and Technology, 23(11), 3105-3113. https://doi.org/10.1007/s12206-009-0902-6
[60]. Ryu, K. (2010). The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresource Technology, 101(1), S78-S82. https://doi.org/10.1016/j.biortech.2009.05.034
[61]. Sarin, A., Arora, R., Singh, N. P., Sharma, M., & Malhotra, R. K. (2009). Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy, 34(9), 1271-1275. https://doi.org/10.1016/j.energy.2009.05.018
[62]. Sathiyamoorthi, R., & Sankaranarayanan, G. (2016). Effect of antioxidant additives on the performance and emission characteristics of a DICI engine using neat lemongrass oil–diesel blend. Fuel, 174, 89-96. https://doi.org/10.1016/j.fuel.2016.01.076
[63]. Scharmer, K. (2006). Biodiesel from set-aside land. Sustainable Agriculture for Food, Energy and Industry, 2, 844-848.
[64]. Sendzikiene, E., Makareviciene, V., & Janulis, P. (2005). Oxidation Stability of Biodiesel Fuel Produced from Fatty Wastes. Polish Journal of Environmental Studies, 14(3), 335–339.
[65]. Shahabuddin, M., Kalam, M. A., Masjuki, H. H., Bhuiya, M. M. K., & Mofijur, M. (2012). An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy, 44(1), 616-622. https://doi.org/10.1016/j.energy.2012.05.032
[66]. Sorate, K. A., Bhale, P. V., & Meena, R. N. (2016). Oxidation stability of biodiesel derived from high free fatty acid feedstock. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(10), 1410-1418. https://doi.org/10.1080/15567036.2014.910568
[67]. Tang, H., Wang, A., Salley, S. O., & Ng, K. S. (2008). The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. Journal of the American Oil Chemists' Society, 85(4), 373-382. https://doi.org/10.1007/s11746- 008-1208-z
[68]. Tian, K., & Dasgupta, P. K. (1999). Determination of oxidative stability of oils and fats. Analytical Chemistry, 71(9), 1692-1698. https://doi.org/10.1021/ac981365t
[69]. Van, G., Cundiff, E. E., Gavett, C., Hansen, C., Peterson, M. A., Sanderson, H. & Shapouri, D. L. (1986). Third liquid fuel conference: Liquid fuel and industrial products from renewable resources, American Society of Agricultural Engineers, 7, 197-206.
[70]. Verma, P., & Singh, V. M. (2014). Assessment of diesel engine performance using cotton seed biodiesel. Integrated Research Advances, 1(1), 1-4.
[71]. Westbrook, S. R. (2005). Evaluation and Comparison of Test Methods to Measure the Oxidation Stability of Neat Biodiesel. Subcontract Report: National Renewable Energy Laboratory, 3, 1-19. Retreieved from https://www. nrel.gov/docs/fy06osti/38983.pdf
[72]. Yaakob, Z., Narayanan, B. N., & Padikkaparambil, S. (2014). A review on the oxidation stability of biodiesel. Renewable and Sustainable Energy Reviews, 35, 136-153. https://doi.org/10.1016/j.rser.2014.03.055
[73]. Yaakob, Z., Sukarman, I. S. B., Narayanan, B., Abdullah, S. R. S., & Ismail, M. (2012). Utilization of palm empty fruit bunch for the production of biodiesel from Jatropha curcas oil. Bioresource Technology, 104, 695- 700. https://doi.org/10.1016/j.biortech.2011.10.058
[74]. Yamane, K., Kawasaki, K., Sone, K., Hara, T., & Prakoso, T. (2007). Oxidation stability of biodiesel and its effects on diesel combustion and emission characteristics. International Journal of Engine Research, 8(3), 307-319. https://doi.org/10.1243%2F14680874JER00207
[75]. Yang, Z., Hollebone, B. P., Wang, Z., Yang, C., & Landriault, M. (2013). Factors affecting oxidation stability of commercially available biodiesel products. Fuel Processing Technology, 106, 366-375. https://doi.org/10. 1016/j.fuproc.2012.09.001
[76]. Zheng, M., Mulenga, M. C., Reader, G. T., Wang, M., Ting, D. S., & Tjong, J. (2008). Biodiesel engine performance and emissions in low temperature combustion. Fuel, 87(6), 714-722. https://doi.org/10.1016/ j.fuel.2007.05.039

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.