References
[1]. Balafar, M. A., Ramli, A. R., Saripan, M. I., & Mashohor, S. (2010). Review of brain MRI image segmentation methods. Artificial Intelligence Review, 33(3), 261-274. https://doi.org/10.1016/j.mri.2019.06.010
[2]. Bazi, Y., Bruzzone, L., & Melgani, F. (2007). Image thresholding based on the EM algorithm and the generalized Gaussian distribution. Pattern Recognition, 40(2), 619-634. https://doi.org/10.1016/j.patcog. 2006.05.006
[3]. Despotović, I., Goossens, B., & Philips, W. (2015). MRI segmentation of the human brain: Challenges, methods, and applications. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/ 2015/450341
[4]. Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, 31(8), 1426-1438. https://doi.org/10.1016/j.mri.2013.05.002
[5]. Hamdaoui, F., Mtibaa, A., & Sakly, A. (2014, December). Comparison between MPSO and MSFLA metaheuristics for MR brain image segmentation. In 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 164-168). IEEE. https://doi.org/ 10.1109/STA.2014.7086725
[6]. Kwon, G. R., Basukala, D., Lee, S. W., Lee, K. H., & Kang, M. (2016). Brain image segmentation using a combination of expectation‐maximization algorithm and watershed transform. International Journal of Imaging Systems and Technology, 26(3), 225-232. https://doi.org/10.1002/ima.22181
[7]. Ladgham, A., Hamdaoui, F., Sakly, A., & Mtibaa, A. (2015). Fast MR brain image segmentation based on modified Shuffled Frog Leaping Algorithm. Signal, Image and Video Processing, 9(5), 1113-1120. https://doi.org/ 10.1007/s11760-013-0546-y
[8]. Ladgham, A., Sakly, A., & Mtibaa, A. (2014, December). MRI brain tumor recognition using modified shuffled frog leaping algorithm. In 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 504-507). IEEE. https://doi.org/ 10.1109/STA.2014.7086694
[9]. Lama, R. K., Choi, M. R., & Kwon, G. R. (2016). Image interpolation for high-resolution display based on the complex dual-tree wavelet transform and hidden Markov model. Multimedia Tools and Applications, 75(23), 16487- 16498. https://doi.org/10.1007/s11042-016-3245-1
[10]. Shah, S. A., & Chauhan, N. C. (2015). An automated approach for segmentation of brain MR images using gaussian mixture model based hidden markov random field with expectation maximization. Journal of Biomedical Engineering and Medical Imaging, 2(4), 57- 70. http://doi.org/10.14738/jbemi. 24.1411
[11]. Shen, Q., Shi, W. M., & Kong, W. (2008). Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data. Computational Biology and Chemistry, 32(1), 53-60. https://doi.org/10.1016/j.compbiolchem. 2007.10.001
[12]. Sirisha, P. G. K., & Haritha, D. (2016). Optimized segmentation of brain images using shuffled frog leaping algorithm-expectation–maximization framework. In International Conference on Emerging Multidisciplinary Research and Computational Intelligence-ICEMRCI (pp. 151-157). Retrieved from https://www.worldresearch journal.com/specialissue/22.pdf
[13]. Sirisha, P. G. K., & Haritha, D. (2018). Optimized segmentation of brain images using shuffled frog leaping algorithm-Tabu Search framework. International Journal of Pharmaceutical Research, 10(4), 197-206. https://doi.org/10.31838/ijpr/2018.10.04.047
[14]. Yahya, A. A., Tan, J., & Hu, M. (2013). A novel model of image segmentation based on watershed algorithm. Advances in Multimedia. https://doi.org/10.1155/2013/ 120798
[15]. Yousefi, S., Azmi, R., & Zahedi, M. (2012). Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms. Medical Image Analysis, 16(4), 840-848. https://doi.org/10.1016/j.media.2012.01.001