Implementation of Nanocommunication System using Quantum Dot Cellular Automata for Error Detection

R. Gurunadha*
Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological University, Vizianagaram, Andhra Pradesh, India.
Periodicity:July - December'2019
DOI : https://doi.org/10.26634/jes.8.1.16317

Abstract

A nano-communication system has been developed using Quantum-dot Cellular Automata (QCA). Complementary Metal Oxide Semiconductor (CMOS) is dominant technology in manufacturing of VLSI and it has some problems with scaling in size. Semiconductor industry is looking for emerging technology to replace the CMOS technology. QCA has the advantage of ultra low power consumption, high clock rate. Nanoscale communication systems are used in computer, electronic devices, mobile phones, etc. QCA devices are designed by carefully selecting the placement of QCA cells and the timing of their tunnelling barriers are raised and lowered. By improving this communication system, signal distribution can be increased. The design of QCA is implemented using AND gate, OR gate, NOR gate, etc. The main objective of the study is to provide fast processing and energy saving approach for communication systems. Nano communication architecture with the proposed circuits demonstrates the efficiency of this design. In this paper a simple XOR gate and novel XOR gate design are shown using QCA. The results of simple XOR and novel XOR is compared in terms of delay, area and time. The active area of QCA research involves the design and verification of complex devices composed of fundamental QCA gates. Furthermore, the bit-error coverage in nano communication was detected. Using these gate level sample, it is possible to develop high combinational circuits for achieving updated technology.

Keywords

CMOS Technology, Communication Systems, Quantum-dot Cellular Automation (QCA).

How to Cite this Article?

Gurunadha, R. (2019). Implementation of Nanocommunication System using Quantum Dot Cellular Automata for Error Detection. i-manager's Journal on Embedded Systems, 8(1), 15-23. https://doi.org/10.26634/jes.8.1.16317

References

[1]. Awais, M., Vacca, M., Graziano, M., Roch, M. R., & Masera, G. (2013). Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Transactions on Nanotechnology, 12(3), 368-377. https:// doi.org/10.1109/TNANO.2013.2251422
[2]. Chabi, A. M., Sayedsalehi, S., Angizi, S., & Navi, K. (2014). Efficient QCA exclusive-OR and multiplexer circuits based on a nanoelectronic-compatible designing approach. International Scholarly Research Notices (pp. 1-9). https://doi.org/10.1155/2014/463967
[3]. Cheung, T., & Smith, J. E. (1986). A simulation study of the CRAY X-MP memory system. IEEE Transactions on Computers, 35(7), 613-622. https://doi.ieeecompu tersocie ty.org/10.1109/TC.1986.1676802
[4]. Cho, H., & Swartzlander, E. E. (2007). Adder designs and analyses for Quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374-383. https://doi.org/10.1109/TNANO.2007.894839
[5]. Devadoss, R., Paul, K., & Balakrishnan, M. (2011). PQCA: A tiled programmable fabric architecture using molecular quantum-dot cellular automata. ACM Journal on Emerging Technologies in Computing Systems (JETC), 7(3), 1-20. https://doi.org/10.1145/2000502.2000506
[6]. Duquennoy, S., Le Beux, S., Marquet, P., Meftali, S., & Dekeyser, J. L. (2006, December). MpNoC design: th Modeling and simulation. In 15 IP Based SoC Design Conference (IP-SoC 2006) (pp.1-6).
[7]. Ermolov, V., Heino, M., Karkkainen, A., Lehtiniemi, R., Nefedov, N., Pasanen, P., Radivojevic, Z., Rouvala, M., Ryhanen, T., Vusitalo, M. A., & Uusitalo, M. A. (2007, September). Significance of nanotechnology for future th wireless devices and communications. In 2007 IEEE 18 International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1-5). IEEE. https://doi.org/ 10.1109/PIMRC.2007.4394126
[8]. Gladshtein, M. (2011). Quantum-dot cellular automata serial decimal adder. IEEE Transactions on Nanotechnology, 10(6), 1377-1382. https://doi.org/ 10.1109/TNANO.2011.2138714
[9]. Graunke, C. R., Wheeler, D. I., Tougaw, D., & Will, J. D. (2005). Implementation of a crossbar network using quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 4(4), 435-440. https://doi.org/10.1109/ TNANO.2005.851278
[10]. Hänninen, I., & Takala, J. (2007). Binary multipliers on quantum-dot cellular automata. Facta Universitatis Series: Electronics and Energetics, 20(3), 541-560. https:/ /doi.org/10.2298/FUEE0703541H
[11]. Hashemi, S., Farazkish, R., & Navi, K. (2013). New quantum dot cellular automata cell arrangements. Journal of Computational and Theoretical Nanoscience, 10(4), 798-809. https://doi.org/10.1166/jctn.2013.2773
[12]. Hayati, M., & Rezaei, A. (2013). Design of novel efficient XOR gates for quantum-dot cellular automata. Journal of Computational and Theoretical Nanoscience, 10(3), 643-647. https://doi.org/10.1166/jctn.2013.2748
[13]. Janulis, J. R., Tougaw, P. D., Henderson, S. C., & Johnson, E. W. (2004). Serial bit-stream analysis using quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 3(1), 158-164. https://doi.org/10.1109/ TNANO.2004.824014
[14]. Lauwereins, R. (2002, September). Creating a world of smart re-configurable devices. In International Conference on Field Programmable Logic and Applications (pp. 790-794). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46117-5_81
[15]. Lent, C. S., & Tougaw, P. D. (1997). A device architecture for computing with quantum dots. Proceedings of the IEEE, 85(4), 541-557. https://doi.org/ 10.1109/5.573740
[16]. Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular automata. Nanotechnology, 4(1), 49-57. https://doi.org/10.1088/0957-4484/4/1/004
[17]. Niemier, M. T. (2000). Designing digital systems in quantum cellular automata (Doctoral dissertation), University of Notre Dame, Indiana. Retrived from http://nano.cc.gatech.edu/documents/Niemier%20- %20Design%20Digitial%2 0Systems%20in%20QCA.pdf
[18]. Perri, S., & Corsonello , P. (2012). New methodology for the design of efficient binary addition circuits in QCA. IEEE Transactions on Nanotechnology, 11(6), 1192-1200. https://doi.org/10.1109/TNANO.2012.2220565
[19]. Sardinha, L. H., Costa, A. M., Neto, O. P. V., Vieira, L. F., & Vieira, M. A. (2013). Nanorouter: A quantum-dot cellular automata design. IEEE Journal on Selected Areas in Communications, 31(12), 825-834. https://doi.org/ 10.1109/JSAC.2013.SUP2.12130015
[20]. Tehrani, M. A., Safaei, F., Moaiyeri, M. H., & Navi, K. (2011). Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectronics Journal, 42(6), 913-922. http s://doi.org/10.1016/j.mejo.2011.03.004
[21]. Tougaw, D., & Khatun, M. (2013). A scalable signal distribution network for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 12(2), 215-224. https://doi.org/10.1109/TNANO.2013.2243162
[22]. Tougaw, P. D., & Lent, C. S. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied Physics, 75(3), 1818-1825. https://doi.org/10.1063/1.356375
[23]. Waje, M. G., & Dakhole, P. K. (2014, March). Design and simulation of new XOR gate and code converters using Quantum Dot Cellular Automata with reduced number of wire crossings. In 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (pp. 1245-1250). IEEE. https: //doi.org/10.1109/ICCPCT.2014.7054942
[24]. Walus, K., & Jullien, G. A. (2006). Design tools for an emerging SoC technology: Quantum-dot cellular automata. Proceedings of the IEEE, 94(6), 1225-1244. https://doi.org/10.1109/JPROC.2006.875791
[25]. Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A. (2004). QCA Designer: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 3(1), 26-31. https://doi.org/10.1109/TN ANO.2003.820815
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.