References
[1]. Awais, M., Vacca, M., Graziano, M., Roch, M. R., &
Masera, G. (2013). Quantum dot cellular automata
check node implementation for LDPC decoders. IEEE
Transactions on Nanotechnology, 12(3), 368-377. https://
doi.org/10.1109/TNANO.2013.2251422
[2]. Chabi, A. M., Sayedsalehi, S., Angizi, S., & Navi, K.
(2014). Efficient QCA exclusive-OR and multiplexer circuits
based on a nanoelectronic-compatible designing
approach. International Scholarly Research Notices (pp.
1-9). https://doi.org/10.1155/2014/463967
[3]. Cheung, T., & Smith, J. E. (1986). A simulation study of
the CRAY X-MP memory system. IEEE Transactions on
Computers, 35(7), 613-622. https://doi.ieeecompu
tersocie ty.org/10.1109/TC.1986.1676802
[4]. Cho, H., & Swartzlander, E. E. (2007). Adder designs
and analyses for Quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374-383. https://doi.org/10.1109/TNANO.2007.894839
[5]. Devadoss, R., Paul, K., & Balakrishnan, M. (2011). PQCA:
A tiled programmable fabric architecture using
molecular quantum-dot cellular automata. ACM Journal
on Emerging Technologies in Computing Systems (JETC),
7(3), 1-20. https://doi.org/10.1145/2000502.2000506
[6]. Duquennoy, S., Le Beux, S., Marquet, P., Meftali, S., &
Dekeyser, J. L. (2006, December). MpNoC design:
th Modeling and simulation. In 15 IP Based SoC Design
Conference (IP-SoC 2006) (pp.1-6).
[7]. Ermolov, V., Heino, M., Karkkainen, A., Lehtiniemi, R.,
Nefedov, N., Pasanen, P., Radivojevic, Z., Rouvala, M.,
Ryhanen, T., Vusitalo, M. A., & Uusitalo, M. A. (2007,
September). Significance of nanotechnology for future
th wireless devices and communications. In 2007 IEEE 18
International Symposium on Personal, Indoor and Mobile
Radio Communications (pp. 1-5). IEEE. https://doi.org/
10.1109/PIMRC.2007.4394126
[8]. Gladshtein, M. (2011). Quantum-dot cellular
automata serial decimal adder. IEEE Transactions on
Nanotechnology, 10(6), 1377-1382. https://doi.org/
10.1109/TNANO.2011.2138714
[9]. Graunke, C. R., Wheeler, D. I., Tougaw, D., & Will, J. D.
(2005). Implementation of a crossbar network using
quantum-dot cellular automata. IEEE Transactions on
Nanotechnology, 4(4), 435-440. https://doi.org/10.1109/
TNANO.2005.851278
[10]. Hänninen, I., & Takala, J. (2007). Binary multipliers on
quantum-dot cellular automata. Facta Universitatis
Series: Electronics and Energetics, 20(3), 541-560. https:/
/doi.org/10.2298/FUEE0703541H
[11]. Hashemi, S., Farazkish, R., & Navi, K. (2013). New
quantum dot cellular automata cell arrangements.
Journal of Computational and Theoretical Nanoscience,
10(4), 798-809. https://doi.org/10.1166/jctn.2013.2773
[12]. Hayati, M., & Rezaei, A. (2013). Design of novel
efficient XOR gates for quantum-dot cellular automata.
Journal of Computational and Theoretical Nanoscience,
10(3), 643-647. https://doi.org/10.1166/jctn.2013.2748
[13]. Janulis, J. R., Tougaw, P. D., Henderson, S. C., &
Johnson, E. W. (2004). Serial bit-stream analysis using
quantum-dot cellular automata. IEEE Transactions on
Nanotechnology, 3(1), 158-164. https://doi.org/10.1109/
TNANO.2004.824014
[14]. Lauwereins, R. (2002, September). Creating a world
of smart re-configurable devices. In International
Conference on Field Programmable Logic and
Applications (pp. 790-794). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-46117-5_81
[15]. Lent, C. S., & Tougaw, P. D. (1997). A device
architecture for computing with quantum dots.
Proceedings of the IEEE, 85(4), 541-557. https://doi.org/
10.1109/5.573740
[16]. Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H.
(1993). Quantum cellular automata. Nanotechnology,
4(1), 49-57. https://doi.org/10.1088/0957-4484/4/1/004
[17]. Niemier, M. T. (2000). Designing digital systems in
quantum cellular automata (Doctoral dissertation),
University of Notre Dame, Indiana. Retrived from
http://nano.cc.gatech.edu/documents/Niemier%20-
%20Design%20Digitial%2 0Systems%20in%20QCA.pdf
[18]. Perri, S., & Corsonello , P. (2012). New methodology
for the design of efficient binary addition circuits in QCA.
IEEE Transactions on Nanotechnology, 11(6), 1192-1200.
https://doi.org/10.1109/TNANO.2012.2220565
[19]. Sardinha, L. H., Costa, A. M., Neto, O. P. V., Vieira, L. F., &
Vieira, M. A. (2013). Nanorouter: A quantum-dot cellular
automata design. IEEE Journal on Selected Areas in
Communications, 31(12), 825-834. https://doi.org/
10.1109/JSAC.2013.SUP2.12130015
[20]. Tehrani, M. A., Safaei, F., Moaiyeri, M. H., & Navi, K.
(2011). Design and implementation of multistage
interconnection networks using quantum-dot cellular
automata. Microelectronics Journal, 42(6), 913-922. http
s://doi.org/10.1016/j.mejo.2011.03.004
[21]. Tougaw, D., & Khatun, M. (2013). A scalable signal
distribution network for quantum-dot cellular automata.
IEEE Transactions on Nanotechnology, 12(2), 215-224.
https://doi.org/10.1109/TNANO.2013.2243162
[22]. Tougaw, P. D., & Lent, C. S. (1994). Logical devices
implemented using quantum cellular automata. Journal of Applied Physics, 75(3), 1818-1825. https://doi.org/10.1063/1.356375
[23]. Waje, M. G., & Dakhole, P. K. (2014, March). Design
and simulation of new XOR gate and code converters
using Quantum Dot Cellular Automata with reduced
number of wire crossings. In 2014 International
Conference on Circuits, Power and Computing
Technologies [ICCPCT-2014] (pp. 1245-1250). IEEE. https:
//doi.org/10.1109/ICCPCT.2014.7054942
[24]. Walus, K., & Jullien, G. A. (2006). Design tools for an
emerging SoC technology: Quantum-dot cellular
automata. Proceedings of the IEEE, 94(6), 1225-1244.
https://doi.org/10.1109/JPROC.2006.875791
[25]. Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A.
(2004). QCA Designer: A rapid design and simulation tool
for quantum-dot cellular automata. IEEE Transactions on
Nanotechnology, 3(1), 26-31. https://doi.org/10.1109/TN
ANO.2003.820815