References
[1]. Anduwan, G. A., Padgett, B. D., Kuntzman, M., Hendrichsen, M. K., Sturzu, I., Khatun, M., & Tougaw, P. D. (2010). Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. Journal of Applied Physics, 107(11), 114306. https://doi.org/10. 1063/1.3428453
[2]. Chandra, J. S., Suresh, K., & Ghosh, B. (2014). Clocking scheme implementation for Multi-Layered quantum dot cellular automata design. Journal of Low Power Electronics, 10(2), 272-278. https://doi.org/10. 1166/jolpe.2014.1314
[3]. Khatun, M., Barclay, T., Sturzu, I., & Tougaw, P. D. (2005). Fault tolerance calculations for clocked quantum-dot cellular automata devices. Journal of applied physics, 98(9), 094904-094910. https://doi.org/ 10.1063/1.2128473
[4]. Khatun, M., Barclay, T., Sturzu, I., & Tougaw, P. D. (2006). Fault tolerance properties in quantum-dot cellular automata devices. Journal of Physics D: Applied Physics, 39(8), 1489-1494. https://doi.org/10.1088/0022-3727/ 39/8/006
[5]. Khatun, M., Padgett, B. D., Anduwan, G. A., Sturzu, I., & Tougaw, D. (2013). Defect and temperature effects on complex quantum-dot cellular automata devices. Journal of Applied Mathematics and Physics, 1(3), 7-15. : https://doi.org/10.4236/jamp.2013.13003
[6]. LaRue, M., Tougaw, D., & Will, J. D. (2003). Stray Charge in Quantum-dot Cellular Automata: A Validation of the Intercellular Hartree Approximation. IEEE Transactions on Nanotechnology, 12(2), 225-233. https://doi.org/10.1109/TNANO.2013.2243466
[7]. Lent, C. S., & Tougaw, P. D. (1997). A device architecture for computing with quantum dots. Proceedings of the IEEE, 85(4), 541-557. https://doi.org/ 10.1109/5.573740
[8]. Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular automata. Nanotechnology, 4(1), 49-57. https://doi.org/10.1088/0957-4484/4/1/004
[9]. Niemier, M. T. (2003). The effects of a new technology on the design, organization, and architectures of computing system. (Doctoral thesis), Department of Computer Science Engineering University of Notre Dame, South Bend, USA).
[10]. Orlov, A. O., Amlani, I., Kummamuru, R. K., Ramasubramaniam, R., Toth, G., Lent, C. S., & Snider, G. L. (2000). Experimental demonstration of clocked singleelectron switching in quantum-dot cellular automata. Applied Physics Letters, 77(2), 295-297. https://doi.org/ 10.1063/1.126955
[11]. Ottavi, M., Schiano, L., Lombardi, F., & Tougaw, D. (2006). HDLQ: a HDL environment for QCA design. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(4), 243-261. https://doi.org/10.1145/1216396. 1216397
[12]. Pasky, J. R., Henry, L., & Tougaw, P. D. (2000). Regular arrays of quantum-dot cellular automata “macrocells”. Journal of Applied Physics, 87(12), 8604-8609. https://doi.org/10.1063/1.373585
[13]. Tougaw, P. D., & Lent, C. S. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied physics, 75(3), 1818-1825. https://doi.org/10. 1063/1.356375
[14]. Tougaw, P. D., & Lent, C. S. (1996). Dynamic behavior of quantum cellular automata. Journal of Applied Physics, 80(8), 4722-4736. https://doi.org/10.1063/1. 363455
[15]. Walus, K., Dimitrov, V., Jullien, G. A., & Miller, W. C. (2003). QCADesigner: A CAD Tool for an Emerging Nano- Technology. Micronet Annual Workshop.