References
[1]. Aranganathan, N., & Bijwe, J. (2015). Special grade of
graphite in NAO friction materials for possible replacement
of copper. Wear, 330, 515-523. https://doi.org/10.1016/j.
wear.2014.12.037
[2]. Aranganathan, N., & Bijwe, J. (2016). Comparative
performance evaluation of NAO friction materials
containing natural graphite and thermo-graphite. Wear,
358, 17-22.
[3]. Aranganathan, N., Mahale, V., & Bijwe, J. (2016).
Effects of aramid fiber concentration on the friction and
wear characteristics of non-asbestos organic friction
composites using standardized braking tests. Wear, 354,
69-77. https://doi.org/10.1016/j.wear.2016.03.002
[4]. Baklouti, M., Cristol, A. L., Desplanques, Y., & Elleuch, R.
(2015). Impact of the glass fibers addition on tribological
behavior and braking performances of organic matrix
composites for brake lining. Wear, 330, 507-514.
[5] Cai, P., Wang, Y., Wang, T., & Wang, Q. (2015). Effect of
resins on thermal, mechanical and tribological properties
of friction materials. Tribology International, 87, 1-10.
[6]. Eriksson, M., & Jacobson, S. (2000). Tribological
surfaces of organic brake pads. Tribology International,
33(12), 817-827. https://doi.org/10.1016/S0301-679X(00)
00127-4
[7]. Gurunath, P. V., & Bijwe, J. (2007). Friction and wear
studies on brake-pad materials based on newly developed
resin. Wear, 263(7-12), 1212-1219. https://doi.org/10.101
6/j.wear.2006.12.050
[8]. Ho, S. C., Lin, J. C., & Ju, C. P. (2005). Effect of fiber
addition on mechanical and tribological properties of a
copper/phenolic-based friction material. Wear, 258(5-6),
861-869. https://doi.org/10.1016/j.wear.2004.09.050
[9]. Hwang, H. J., Jung, S. L., Cho, K. H., Kim, Y. J., & Jang, H.
(2010). Tribological performance of brake friction materials
containing carbon nanotubes. Wear, 268(3-4), 519-525.
https://doi.org/10.1016/j.wear.2009.09.003
[10]. Jang, H., Ko, K., Kim, S. J., Basch, R. H., & Fash, J. W.
(2004). The effect of metal fibers on the friction
performance of automotive brake friction materials. Wear,
256(3-4), 406-414. https://doi.org/10.1016/S0043-164
8(03)00445-9
[11]. Kumar, M., & Bijwe, J. (2010a). NAO friction materials
with various metal powders: Tribological evaluation on fullscale
inertia dynamometer. Wear, 269(11-12), 826-837.
https://doi.org/10.1016/j.wear.2010.08.011
[12]. Kumar, M., & Bijwe, J. (2010b). Role of different
metallic fillers in non-asbestos organic (NAO) friction
composites for controlling sensitivity of coefficient of friction
to load and speed. Tribology International, 43(5-6), 965-
974. https:/ /doi.org/10.1016/j.triboint.2009.12.062
[13]. Kumar, M., & Bijwe, J. (2011). Non-asbestos organic
(NAO) friction composites: Role of copper; its shape and
amount. Wear, 270(3-4), 269-280. https://doi.org/10.1016/j. wear.2010.10.068
[14]. Lee, J. J., Lee, J. A., Kwon, S., & Kim, J. J. (2018). Effect
of different reinforcement materials on the formation of
secondary plateaus and friction properties in friction
materials for automobiles. Tribology International, 120, 70-
79. https://doi.org/10.1016/j.triboint.2017.12.020
[15]. Lee, K. J., Hsu, M. H., Cheng, H. Z., Jang, J. S. C., Lin, S.
W., Lee, C. C., & Lin, S. C. (2009). Tribological and
mechanical behavior of carbon nanotube containing
brake lining materials prepared through sol–gel catalyst
dispersion and CVD process. Journal of Alloys and
Compounds, 483(1-2), 389-393. https://doi.org/10.1016/j.
jallcom.2008.08.107
[16]. Mahale, V., Bijwe, J., & Sinha, S. (2017). Influence of
nano-potassium titanate particles on the performance of
NAO brake-pads. Wear, 376, 727-737.
[17]. Neis, P. D., Ferreira, N. F., Fekete, G., Matozo, L. T., &
Masotti, D. (2017). Towards a better understanding of the
structures existing on the surface of brake pads. Tribology
International, 105, 135-147. https://doi.org/10.1016/j.trib
oint.2016.09.033
[18]. Österle, W., Kloß, H., Urban, I., & Dmitriev, A. I. (2007).
Towards a better understanding of brake friction materials.
Wear, 263(7-12), 1189-1201. https://doi.org/10.1016/j.we
ar.2006.12.020
[19]. Roubicek, V., Raclavska, H., Juchelkova, D., & Filip, P.
(2008). Wear and environmental aspects of composite
materials for automotive braking industry. Wear, 265(1-2),
167-175. https://doi.org/10.1016/j.wear.2007.09.006
[20]. Satapathy, B. K., & Bijwe, J. (2004). Performance of
friction materials based on variation in nature of organic
fibres: Part I. Fade and recovery behaviour. Wear, 257(5-6),
573-584. https://doi.org/10.1016/j.wear.2004.03.003
[21]. Straffelini, G., Verma, P. C., Metinoz, I., Ciudin, R.,
Perricone, G., & Gialanella, S. (2016). Wear behavior of a
low metallic friction material dry sliding against a cast iron
disc: Role of the heat-treatment of the disc. Wear, 348, 10-
16. https://doi.org/10.1016/j.wear.2015.11.020
[22]. Thuresson, D. (2004). Influence of material properties
on sliding contact braking applications. Wear, 257(5-6), 451-460. https://doi.org/10.1016/j.wear.2004.01.009
[23]. Verma, P. C., Ciudin, R., Bonfanti, A., Aswath, P.,
Straffelini, G., & Gialanella, S. (2016). Role of the friction layer in the high-temperature pin-on-disc study of a brake
material. Wear, 346, 56-65. https://doi.org/10.1016/j.wear
.2015.11.004