References
[1]. Afkar, A., & Kamari, M. N. (2016). Analysis of free and forced vibration of FGM rectangular floating plates (in contact with fluid) using the theory of Mindlin. Journal of Materials and Environmental Science, 7(9), 3264-3277.
[3]. Blevins, R., D. (1979). Formulas for Natural Frequencies and Mode Shapes. Van Nostrand Reinhold Company.
[4]. Daouadji, T. H., Tounsi, A., Hadji, L., Henni, A. H., & Bedia, E. A. A. (2012). A theoretical analysis for static and dynamic behavior of functionally graded plates. Materials Physics and Mechanics, 14(2), 110-128.
[5].
Ferreira, A. J. M., Batra, R. C., Roque, C. M. C., Qian, L. F., & Martins, P. A. L. S. (2005). Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite Structures, 69(4), 449-457.
[9]. Kumar, A., & Arakerimath, R. R. (2015). A Review and modal analysis of stiffened plate. International Research Journal of Engineering and Technology (IRJET), 2(8), 581- 588.
[10]. Kumar, P. R., Kumar, P. N., & Janardhana, G. R. (2017). Static analysis of Al-ZrO FG thick plate using graded FEM. Materials Today: Proceedings, 4(8), 8117- 8126.
[11]. Mahajan, P. P., & Pawar, P., M. (2013). Flexural analysis of functionally graded plate using ANSYS. International Journal of Science and Research (Online), 2319-7064.
[12]. Mahamood, R. M., Akinlabi, E. T., Shukla, M., & Pityana, S. (2012). Functionally graded material: An overview. In Proceedings of the World Congress on Engineering (Vol. 3).
[13]. Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A., & Ford, R. G. (1999). Functionally Graded Materials: Design, Processing and Applications. New York: Springer Science and Business Media.
[14].
Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Roque, C. M. C., Cinefra, M., Jorge, R. M. N., & Soares, C. M. M. (2011). Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions. Mechanics Research Communications, 38(5), 368-371.
[15]. Onate, E. (2012). Structural Analysis with the Finite Element Method - Linear Statics, (Vol. 2) Springer.
[16]. Owunna, I., Ikpe, A. E., Satope, P., & Ikpe, E. (2016). Experimental modal analysis of a flat plate subjected to vibration. American Journal of Engineering Research (AJER), 5(6), 30-37.
[17]. Ramu, I, & Mohanty, S., C. (2014a). Vibration and parametric instability of functionally graded material plates. Journal of Mechanical Design and Vibration, 2(4), 102-110.
[19].
Redddy, B. S., Kumar, J. S., Reddy, C. E., & Reddy, K. V. K. (2014). Free vibration behavior of functionally graded plates using higher order shear deformation theory, Journal of Applied Science and Engineering, 17(3), 231- 241.
[22]. Solanki, M., K, Kumar, R., & Singh, J. (2016). Free vibration analysis of FGM plates. International Journal of Innovations in Engineering & Technology, l6 (3), 351-358.
[25]. Ventsel, E., Krauthammer, T., & Carrera, E. (2002). Thin Plates and Shells: Theory, Analysis, and Applications. New York: Marcel Dekker Inc.
[26]. Wang, C. M., Reddy, J. N., & Lee, K. H. (Eds.). (2000). Shear Deformable Beams and Plates: Relationships with Classical Solutions. Amsterdam: Elsevier.