Step Discontinuity Analysis in an Asymmetric Single Mode Thin Planar Slab Taper Optical Waveguide

S. K. Raghuwanshi*, Santosh Kumar**
*-** Department of Electronics Engineering, Indian School of Mines, Dhanbad, India.
Periodicity:December - February'2012
DOI : https://doi.org/10.26634/jele.2.2.1626

Abstract

We study the thin taper optical waveguide structure by using the step discontinuity model. The technique presented is unique and not being discussed elsewhere. We also study the power loss due to step discontinuity effect for the case of an asymmetric single mode planar slab taper waveguide structure. The only assumption, we consider is that there are no reflection of fields at the step discontinuity point. In this paper we also assume that there are no mode conversions due to discontinuity effect and the structure maintain the single mode operation even at the step discontinuity point. We deliberately considered the thin taper structure to be valid on single mode operation. The technique presented can be easily extended to more complicated waveguide structure like ridge waveguide structure.

Keywords

Taper optical waveguide, computational electromagnetic, formal electromagnetic concepts

How to Cite this Article?

Sanjeev Kumar Raghuwanshi and Santosh Kumar (2012). Step Discontinuity Analysis In An Asymmetric Single Mode Thin Planar Slab Taper Optical Waveguide. i-manager’s Journal on Electronics Engineering, 2(2), 43-48. https://doi.org/10.26634/jele.2.2.1626

References

[1]. S. K. Raghuwanshi. (2010). “Comparative study of asymmetric versus symmetric planar slab dielectric optical waveguides” Indian J of Phys. Vol. 84, 7, 831-846.
[2]. D. Marcuse, (1991). Theory of dielectric waveguides, 2nd ed., Academic Press, San Diego.
[3]. E. A. Marcatili, (1969). “Bends in optical dielectric guides”, Bell System Technical Journal, pp. 2103-2132.
[4]. Asok De and G. V. Attimarad. (2004). “Numerical analysis of two dimensional tapered dielectric waveguide”, Progress in Electromagnetic Research (PIER), 44, pp. 131-142.
[5]. M. Belanger and G. L. Yip. (1984). “Mode conversion analysis in a single mode planar taper optical waveguide”, Applied Scientific Research, 41, 305-314.
[6]. William K. Burns and A. Fenner Milton, (1975). “Mode conversion in planar-dielectric separating waveguides” IEEE J. of Quantum Electronics, QE-11(1), 32-39 Jan.
[7]. T. E. Rozzi, (1978). “Rigorous analysis of the step discontinuity in a planar dielectric waveguide”, IEEE Transactions on Microwave Theory and Techniques”, MTT- 26(10), 738-746 Oct.
[8]. B. Sepulveda and Laura M. Lechuga, (2007). “Matrix analysis of discontinuities in nonreciprocal waveguides: Analytical description for magneto optical slab waveguides”, IEEE Journal of Lightwave Technology, Vol. 22, 7, 1772-1781 July.
[9]. S. Dwari, A. Chakraborty and S. Sanyal, (2006). “Analysis of linear tapered waveguide by two approaches”, Progress in Electromagnetic Research (PIER), 64, 219-238.
[10]. Y. Cai, T. Mizumoto and Y. Naito, (1990). “Analysis of the coupling characteristics of a tapered coupled waveguide system”, IEEE Journal of Lightwave Technology, 8(1), 90-98 Jan.
[11]. K. Hirama and M. Koshiba, (1992). “A new low loss structure of abrupt bends in dielectric waveguides”, IEEE Journal of Lightwave Technology, 10(5), 563-569 May.
[12]. A. Weisshaar and Vijai K. Tripathi, (1992). “Modal analysis of step discontinuities in graded index dielectric slab waveguides”, IEEE Journal of Lightwave Technology, 10(5), 593-602 May.
[13]. R. Pregla, (1996). “The method of lines for the analysis of dielectric waveguide bends”, IEEE Journal of Lightwave Technology, 14(4), 634-639 April.
[14]. T. E. Rozzi and G. H. Intveld. (1979). “Field and network analysis of interacting step discontinuities in planar dielectric waveguides”, IEEE Transactions on Microwave Theory and Techniques”, MTT-27(4), 303-309 April.
[15]. A. Chakraborty and G. S. Sanyal, (1980). “Transmission matrix of a linear double taper in rectangular waveguides”, IEEE Transactions on Microwave Theory and Techniques”, MTT-28(6), 577-579 Jun.
[16]. X. Qian and A.C. Boucouvalas, (2007). “Synthesis of symmetric and asymmetric planar optical waveguides”, IET Optoelectron. 1(4), 185-190.
[17]. A. Melloni, F. Carniel, R. Costa and M. Martinelli, (2001). “Determination of bend mode characteristics in dielectric waveguides”, IEEE Journal of Lightwave Technology, 19(4), 571-577.
[18]. P. Bienstman, E. Six, M. Roelens, M. Vanwolleghem and R. Baets, (2002). “Calculation of bending loss in dielectric waveguides using eigenmode expansion and perfectly matched layers”, IEEE Photonics Tech. Lett., 14(2), 164-166.
[19]. D. Marcuse, (1971). “Bending losses of the asymmetric slab waveguide” Bell System Technical Journal, pp. 2551-2563.
[20]. A. Melloni, F. Carniel, R. Costa and M. Martinelli. (2001). “Determination of bend mode characteristics in dielectric waveguides”, IEEE Journal of Lightwave Technology, 19(4), 571-577.
[21]. W. Berglund and A. Gopinath. (2000). “WKB analysis of bend losses in optical waveguides”, IEEE Journal of Lightwave Technology, 18 (8), 1161-1166.
[22]. R. Pregla. (1996). “The method of lines for the analysis of dielectric bends”, IEEE Journal of Lightwave Technology, 14(4), 634-639.
[23]. P. Jain, S. K. Raghuwanshi and S. Talabattula. (2005). “A novel approach to analyze Z-varying integrated optical waveguides", Proceedings of International conference on Optics & Optoelectronics, 12-15 Dec. IRDE, Dehradun, India (PP-FIO-22).
[24]. S, K. Raghuwanshi, D. Chack and V. Kumar. (2011). “Analysis of step discontinuity in a single mode planar slab taper optical waveguide”, IEEE International Conference on Computational Intelligence and Communication Networks (CICN-2011) Gwalior, India.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.