References
[1]. Carezzato, A., Alcantara, M. R., Romero, J., Gut, J., & Tadini, C. (2007). Non-Newtonian Heat Transfer on a plate heat exchanger with generalized configurations. Chemical Engineering Technology, 30(1), 21-26.
[2]. Chen , R., Lin, Y., & Lai, C. (2013). The Influence of Horizontal Longitudinal vibrations and the condensation section temperature on heat transfer performance of heat pipe. Heat Transfer Engineering, 34(1), 45-53.
[3]. Chhabra, R. P., & Richardson, J. F. (1999). Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications. Butterworth Heinemann.
[4]. Choi, S. (1995). Enhancing thermal conductivity of fluids with nanoparticle. ASME FEM, 231, 99.
[5]. Chou, C., Kihm, K., Lee, S., & Choi, S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett., 87(15).
[6]. Davarnejad, R., Barati, S., & Kooshki, M. (2013). CFD Simulation of the effect of particle size on the nanofluids convective heat transfer in the develop region in a circular tube. Springer Plus, 2, 192.
[7]. Deshpande, N. S., & Barigou, M. (2001). Vibrational flow of non-newtonian fluids. Chemical Engineering Science, 56, 3845-3853.
[8]. Easa, M., & Barigou, M. (2010). Enhancing radial temperature uniformity and boundary layer development in viscous Newtonian and non-Newtonian flow by Transverse oscillations: A CFD study. Chemical Engineering Science, 65(6), 2199- 2212.
[9]. Easa, M., & Barigou, M. (2011). CFD simulation of transverse vibration effects on radial temperature profile and thermal entrance length in laminar flow. AIChE Journal, 57(1), 51-56.
[10]. Fox, R. W., McDonald, A. T., & Pritchard, P. J. (2004). Introduction to Fluid Mechanics (6th Ed.). New York: Wiley.
[11]. Heyhat, M., Kowsary, F., Rashidi, A., Momenpour, M., & Amrollahi, A. (2013). Experimental investigation of laminar convective heat transfer and pressure drop of water based Al2O3 nanofluids in fully developed flow regime. Experimental Thermal and Fluid Science, 44, 483-490.
[12]. Hojjat, M., Etemad, S. G., & Bagheri, R. (2010). Laminar heat transfer of non-Newtonian nanofluid in circular tube. korean Journal of Chemical Engineering, 27(5), 1391-1396.
[13]. Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011a). Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. International Journal of Thermal Sciences, 50, 525-531.
[14]. Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011b). Pressure Drop of Non-Newtonian nanofluids flowing through a horizontal circular tube. Journal of Dispersion and Technology, 33(7), 1066-1070.
[15]. Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011c). Rheological characteristics of non-Newtonian nanofluids: Experimental investigation. International Communications in Heat and Mass Transfer, 38, 144-148.
[16]. Illbeigi, M., & Nazar, A. S. (2017). Numerical simulation of laminar convective heat transfer and pressure drop of water based Al2O3 nanofluid as a nanofluid by CFD. Trans Phenom Nano Micro Scales, 5(2), 130-138.
[17]. Jiyuan, T., Guan-Heng, Y., & Chaoqun, L. (2015). Computational Fluid Dynamics- A practical approach. Waltham USA: Elsevier.
[18]. Klaczak, A. (1997). Report from experiments on heat transfer by forced vibrations of exchangers. Heat and Mass Transfer, 32, 477-480.
[19]. Kwant, P. B., Fierens, R., & Van Der Lee, A. (1973). Non-isothermal laminar flow - II. Experimental. Chemical Engineering Science, 28(6), 1317-1330.
[20]. Lee, Y. H., & Chang, S. (2003). The effect of vibration on critical heat flux in a vertical round tube. Journal of Nuclear Science and Technology, 40(10), 734-743.
[21]. Prasad, P. D., & Gupta, A. (2016). Experimental investigation on enhancement of heat transfer using Al2O3/water nanofluid in a tube with twisted tape inserts. Int. Commun. Heat Mass Transfer, 75, 154-161.
[22]. Sharma, K., Sunder, L. S., & Sarma, P. (2009). Estimation of heat transfer coefficient and friction factor in the transition flow with the with low volume concentration of Al2O3 nanofluid flowing in a circular tube with twisted tape insert. Int. Commun Heat Mass Transfer, 36, 503-507.
[23]. Tian, S., & Barigou, M. (2015). An improved vibration technique for enhancing temperature uniformity and heat transfer in viscous fluid flow. Chemical Engineering Science, 123, 606-619.
[24]. Yu, K., Park, C., Kim, S., Song, H., & Jeong, H. (2017). CFD analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe. IOP Conf. Series: Journal of Physics, 885, 1-7.
[25]. Zhang, L., Lv, J., Bai, M., & Guo, D. (2014). Effect of vibration on forced convection heat transfer for SiO2 -Water nanofluids. Heat Transfer Engineering, 36(5), 452-461. https://doi.org/:10.1080/01457632.2014.935214